Microsoft Word for Windows 6.0 Binary File Format
09/03/94

 Microsoft Word 6.0 Binary File Format

Revision history

12/02/93
Updated structures and sprm table for Windows Word 6.0 format

10/25/91
Reformatted document, removed revision marks and completed the summary of changes from Windows Word 1.x to 2.0 format.

5/10/91
Updated structures and sprm table for Windows Word 2.0 format.

1/23/90
Corrected offsets with the definition of the FIB

6/16/89
Updated structure definitions

1/9/89
Document Created

Table of Contents

REVISION HISTORY
1

TABLE OF CONTENTS
1

DEFINITIONS
3

OLE 2.0:
3

API (Application Programming Interface):
4

docfile:
4

page (or sector):
4

document:
4

stream:
4

main stream
4

summary information stream
4

object stream
4

CP (Character Position):
4

FC(File Character position):
4

PLCF(PLex of Cps(or FCs) stored in File):
4

piece table:
5

sprm (Single PRoperty Modifier):
5

grpprl (group of prls):
5

prm (PRoperty Modifier):
5

STTBF (STring TaBle stored in File)
5

full-saved (or non-complex) file:
6

fast-saved (or complex) file:
6

FIB (File Information Block):
6

paragraph
6

run of text
6

section
6

paragraph style
6

CHP (CHaracter Properties)
6

CHPX (Character Property EXception)
6

character style
7

PAP (PAragraph Properties)
7

PAPX (PAragraph Property EXception)
7

table row:
7

TAP (TAble Properties):
7

STSH (STyle SHeet)
7

FKP (Formatted disK Page):
7

bin table
8

SEP(SEction Properties)
8

SEPX(SEction Property EXceptions)
8

DOP (DOcument Properties)
9

sub-document
9

field
9

bookmark
9

picture
10

embedded object
10

drawing object
10

NAMING CONVENTIONS
10

WORD AND DOCFILES
12

FORMAT OF THE SUMMARY INFO STREAM IN A WORD FILE
12

FORMAT OF THE MAIN STREAM IN A WORD NON-COMPLEX FILE
12

FORMAT OF THE MAIN STREAM IN A COMPLEX FILE
14

FIB
16

TEXT
16

CHARACTER AND PARAGRAPH FORMATTING PROPERTIES
18

BIN TABLES
20

STYLESHEET
21

Stylesheet File Format
22

STSHI:
22

STD:
23

SPRM DEFINITIONS
28

COMPLEX FILE FORMAT
40

Algorithm to determine the BOUNDS OF A PARAGRAPH containing a certain character in a complex file
41

Algorithm to determine PARAGRAPH PROPERTIES for a paragraph in a complex file
42

Algorithm to determine TABLE PROPERTIES for a table row in a complex file
42

Algorithm to determine the CHARACTER PROPERTIES of a character in a complex file
42

Algorithm to determine the SECTION PROPERTIES of a section in a complex file
42

Algorithm to determine the PIC of a picture in a complex file.
43

FOOTNOTES
43

HEADERS AND FOOTERS
44

PAGE TABLE
45

GLOSSARY FILES
45

STTBFASSOC(Table of Associated Strings)
46

STRUCTURE DEFINITIONS
46

Autonumbered List Data Descriptor (ANLD)
46

Autonumber Level Descriptor (ANLV)
48

BooKmark First descriptor (BKF)
50

BooKmark Lim descriptor (BKL)
50

Border Code (BRC)
50

Border Code for Windows Word 1.0 (BRC10)
51

Character Properties (CHP)
52

Character Property Exceptions (CHPX)
56

Character Property Exceptions (CHPX)
Error!
Character Properties for Windows Word 1.0 (CHP10/CHPX)
64

Date and Time (internal date format) (DTTM)
68

Drop Cap Specifier(DCS)
68

Document Properties (DOP)
68

Drawing Object (Word) (DO)
73

Drawing Primitive Header (Word) (DPHEAD)
73

Drawing Primitive (Word) (DP)
74

Embedded Object Properties (_OBJHEADER)
78

Field Descriptor (FLD)
78

File Drawn Object Address (Word) (FDOA)
81

Font Family Name (FFN)
81

File Information Block (Windows Word) (FIB)
81

Formatted Disk Page for CHPXs (CHPX FKP)
90

Formatted Disk Page for PAPXs (PAPX FKP)
91

Line Spacing Descriptor (LSPD)
92

Outline LiST Data (OLST)
93

Page Descriptor (PGD)
93

Paragraph Height (PHE)
94

Paragraph Properties (PAP)
94

Paragraph Property Exceptions (PAPX)
97

Picture Descriptor (PIC)
98

Piece Descriptor (PCD)
100

Plex of CPs stored in File (PLCF)
100

Property Modifier(variant 1) (PRM)
100

Property Modifier(variant 2) (PRM)
101

Section Descriptor (SED)
101

Section Properties (SEP)
101

Section Property Exceptions (SEPX)
103

Tab Descriptor (TBD)
103

Table Cell Descriptors (TC)
104

Table Autoformat Look sPecifier ()
104

Table Properties (TAP)
105

Appendix A - Changes from version 1.x to 2.0
106

Changes to Structures
106

BRC
106

CHP
107

DOP
107

DTTM
107

FIB
107

_OBJHEADER
107

PAP
107

PIC
107

SEP
107

DOP to SEP
108

SED
108

TAP
108

TAP
108

TC
108

Other changes
108

sttbfAssoc
108

sttbfFn
108

REVIEW DavidLu
108

FonT Code Link field (FTCL)
108

Index of Changes from version 1.x to 2.0
108

DEFINITIONS

OLE 2.0:

Object Linking and Embedding 2.0

API (Application Programming Interface):

A set of libraries, functions, definitions, etc. which describe an interface to a programming environment or model.

docfile:

An OLE 2.0 compatible multi-stream file

page (or sector):

512 byte segment of the main stream within a Word docfile that begins on a 512-byte boundary. (bytes 0-511 are in page 0, bytes 512-1023 are in page 1, etc.). In Word data structures, an unsigned two-byte integer page number is given the acronym PN (for Page Number).

document:

A named, multi-linked list of data structures, representing an ordered stream of text with properties that was produced by a user of Microsoft Word

stream:

The physical encoding of a Word document 's text and sub data structures in a random access stream within a docfile.

main stream

The stream within a Word docfile containing the bulk Words binary data.

summary information stream

The stream within a Word docfile containing the document summary information.

object stream

A stream containing binary data for an embedded OLE 2.0 object.

CP (Character Position):
A four-byte integer which is the position coordinate of a character of text within the logical text stream of a document.

FC(File Character position):
A four-byte integer which is the byte offset of a character (or other object) from the beginning of the main stream of the docfile. Before a file has been edited(ie. in a full saved Word document), CPs can be transformed into FCs by adding the FC coordinate of the beginning of a document's text stream to the CP. After a file has been edited (ie. in a fast-saved Word document), the mapping from CP to FC is recorded in the piece table (see below)

PLCF(PLex of Cps(or FCs) stored in File):
A data structure consisting of two parallel arrays that allows a relation to be established between a certain CP position in the document text stream (or FC position in a file) and an arbitrary data structure. It consists of an array of n+1 CPs or FCs followed by an array of n instances of a particular arbitrary data structure. In typical usage, the nth CP or FC of the PLCF is in one-to-one correspondence with the nth instance of the arbitrary data structure, with the n+1st CP or FC marking the limit of the nth instance's influence. When a PLCF is used to record a partitioning of the document's text stream or a partitioning of the bytes stored in a file, the 0th CP/FC stored in the PLCF will be 0. When a PLCF is used to record the location of certain marks or links within the document text stream, the 0th CP/FC stored in the PLCF will record the position of the 0th mark or link. To properly interpret a PLCF stored in a Word file, the length of the stored PLCF and the length of the arbitrary data structure stored in the PLCF must be known. The length of the stored PLCF is recorded in the FIB. The lengths of the data structures stored in PLCFs within Word files are listed later in this document.
piece table:

The piece table is a data structure that describes the logical sequence of characters in a Word document and records recent changes to the formatting of a Word document. It is stored in a Word file as a PLCF named the plcfpcd (PLex of Cps containing Piece Descriptors).The piece table relates a logical character number, called a CP (Character Position), to a physical location within a Word file (an FC). The array of CPs in the plcfpcd defines a partitioning of the Word document into disjoint pieces. The second array is an array of PCDs (Piece Descriptors) which is in 1-to-1 correspondence to the array of CPs that records the physical location in the Word file where the corresponding piece begins. To find the physical location of a particular logical character in a Word document, take the CP coordinate of that character within the document and find the piece that contains that character. This is done by finding the index of the largest CP in the array of CPs that is less than the character CP. Then reference the PCD with that index in the array of PCDs. The FC stored in the PCD gives the position of the beginning of the piece in the file. Finally, add the offset of the desired character from the beginning of its piece to the FC of the beginning of the piece. This gives the actual file offset of the character.

sprm (Single PRoperty Modifier):
An instruction to modify one or more properties within one of the property defining data structures (CHP, PAP, TAP, SEP, or PIC). It consists of an operation code which identifies the field(s) to be changed, and an operand which gives the value that a particular field is changed to or else which is a parameter to a procedure which will change the field or fields. The operand is omitted for sprms whose opcodes completely specify the values that must be stored in the property data structure. A synonym used for sprm in some data structure definitions is prl (property modifiers stored in a list).

grpprl (group of prls):

A grpprl is a data structure that records a set of sprms. The 0th sprm is recorded at offset 0 of the structure. Any succeeding sprms are recorded immediately after the end of the preceding sprm . To traverse a grpprl and locate the sprms recorded within it, it’s necessary to fetch the opcode of the first sprm, lookup the length of the sprm with that opcode, use that length to skip past the first sprm, fetch the opcode of the second sprm, lookup the length of that sprm, use the length to skip the second sprm, and so on. See the table in the ”SPRM Definition” topic to determine the length of a sprm.

The phrase ”apply the sprms of a grpprl (or papx or sepx)” used later in this document means to fetch the 0th sprm recorded in the grpprl and perform the action for that sprm, fetch the first sprm and perform its action, and continue this procedure until all sprms in the grpprl (or papx or sepx) have been processed.

prm (PRoperty Modifier):
A field in piece table entries that records how the properties of text within a piece were changed to reflect user formatting operations. The prm usually contains an index to a grpprl which records the user’s formatting changes as a group of sprms. If the user has made only a small change to formatting that can be expressed as a single 2 or 1-byte sprm, that sprm is stored within the prm.

STTBF (STring TaBle stored in File)

Word has many tables of strings that are stored as Pascal type strings. Pascal strings begin with a single byte length count which describes how many characters follow the length byte in the string. If pst is a pointer to an array of characters storing a pascal style string then the length of the string is *pst+1. In an STTBF pascal style strings are concatenated one after another until the length of the STTBF recorded in the FIB is exhausted.

full-saved (or non-complex) file:

A Word file in which the physical order of characters stored in the file is identical to the logical order of characters in the document that the file represents. The text stream of a non-complex file can be described by an fc (an offset from the beginning of the file) to mark where the text begins and a ccp (count of CPs) to record how many characters are stored in the text stream. When a file is stored in non-complex format, the fc and ccp allow an initial piece table to be constructed when the file is read.

fast-saved (or complex) file:

A Word file in which the physical order of characters stored in the file does not match the logical order of characters in the document that the file represents. A piece table must be stored in the file to describe the text stream of the document.

FIB (File Information Block):
The header of a Windows Word file. Begins at offset 0 in file. Gives the beginning offset and lengths of the document's text stream and subsidiary data structures within the file. Also stores other file status information.

paragraph

A contiguous sequence of characters within the text stream of a document that is delimited by a paragraph mark, cell mark, row mark, or a section mark (These are special characters described later in this document).

run of text

A contiguous sequence of characters within the text stream of a document that have the same character formatting properties. A single run may cross paragraph boundaries and may encompass the entire document.

section

A contiguous sequence of paragraphs within the text stream of a document that is delimited by a section mark or by the final paragraph mark at the end of a document. Users frequently treat sections as the equivalent of a chapter in a book. The boundaries of sections mark locations where the layout rules for a document (number of columns, text of headers and footers to use, whether page numbers should be displayed, etc.) are changed.

paragraph style

A named set of character and paragraph properties that can be associated with any number of paragraphs in a Word document's text stream. A paragraph style provides a set of character and paragraph property defaults for the text of any paragraph tagged with that style. When a new paragraph is created and given a particular style, newly typed text is given the character and paragraph properties of that style unless the user makes an exception to the paragraph style definition by performing other editing operations.

CHP (CHaracter Properties)
The data structure describing the character properties of a run of text.

CHPX (Character Property EXception)
A data structure which describes how a particular CHP differs from a reference CHP. In Win Word 6.0, the CHPX simply consists of a grpprl which is applied to the reference CHP to produce the originally encoded CHP. By applying a CHPX to the character properties (CHP) inherited by a particular paragraph from its style, it is possible to reconstitute the CHP for the portion of the character run that intersects that paragraph

character style

A named character property exception that can be associated with any number of runs of text in a Word document’s text stream. When a run of text is tagged with a particular character style, a chpx recorded for the character style is applied to the character properties that are defined for the paragraph style of the paragraph that contains the text. This means that the character style can change one or more of the character property field settings specified by the paragraph style of a paragraph to a particular setting without changing the value of any other field.

PAP (PAragraph Properties)
The data structure which describes the properties of a particular paragraph.

PAPX (PAragraph Property EXception)
A data structure describing how a particular paragraph’s properties differ from the paragraph properties of the style assigned to the paragraph. By applying a PAPX to the paragraph properties (PAP) inherited by a particular paragraph from its style, it is possible to reconstitute the PAP for that paragraph. The PAPX contains an ISTD (a style code to identify the style in control of the paragraph and a grpprl which specifies how the style's paragraph properties must be changed to produce the paragraph properties of the paragraph.

table row:

A contiguous sequence of paragraphs within the text stream of a document that is partitioned into subsequences of paragraphs called cells. The last paragraph of each cell is terminated by a special paragraph mark called a cell mark. Following the cell mark that ends the last cell of a table row, the table row is terminated by a special paragraph mark called a row mark. When Word displays a table row, it assigns a rectangular shaped display area to each cell in the row. All of the cell display area’s top’s are aligned at the same vertical position on a page. The leftmost display area in a table row is assigned to the 0th cell of the row; the next display area to the right is assigned to the 1st cell of the row, etc. The text of the cell is wrapped to fit its display area. As more text is added to the cell, the cell display area extends downward. A set of table properties that determine how many cells are in a row, where the horizontal boundaries of cell display areas are, and what borders are drawn around each cell in the table is stored for the row mark that marks the end of the table row.

TAP (TAble Properties):
The data structure which describes the properties of a single table row. The information in the TAP for a table row is stored in a Word file as a list of sprms that modify a TAP which has been cleared to zeros. This list of table sprms is appended to the grpprl of paragraph sprms that is recorded in the PAPX for the row mark that delimits the end of a table row.

STSH (STyle SHeet)
A data structure which represents every style defined within the Word document. The STSH records a unique name string for every style and associates each name with a particular CHP and/or a PAP. The indexes used to refer to individual styles are called ISTDs (Indexes to STyle Descriptors). Every PAPX for every paragraph recorded in a document contains an ISTD which identifies the style from which a paragraph inherited its default character and paragraph properties. CHPXs recorded for the text within the paragraph and PAPXs recorded for the paragraph itself encode changes that the user has made with respect to the style’s default properties.

FKP (Formatted disK Page):
A data structure that fits in one 512-byte page that encodes either the character properties or the paragraph properties of a certain portion of a Microsoft Word file. An FKP consists of four components:

1) a count of the number of runs or paragraphs described by the page.

2) an array of FCs recorded in ascending order demarcating the boundaries between runs or paragraphs that are recorded adjacent to one another in the Word file.

3) In character FKPs an array of offsets within the FKP in one to one correspondence with the array of FCs that locate the properties of the run that begins at a particular FC.

In paragraph FKPs an array of BX structures follows the array of FCs in one to one correspondence with the array of FCs. Each BX begins with an offset that locates the properties of the paragraph that begins at a particular FC. The remainder of the BX contains a PHE structure that encodes information about the height of the paragraph that begins at that FC.
4) a group of CHPXs if the FKP stores character properties or a group of PAPXs if the FKP stores paragraph and table properties.

To find the CHPX/PAPX corresponding to a particular character in a document, calculate the FC coordinate for that character. Then search through the bin table (see next entry) for the type of property you want to produce, to find the FKP in the document stream whose array of FCs encompasses the FC of the document character.

Then search within the FKP to find the index of the largest FC entry that is less than or equal to the FC of the document character. Use this index to look up an offset in the array of offsets (for character FKPs) or look up an offset in the array of Bxs (for paragraph FKPs) within the FKP. Add this offset to the beginning address of the FKP in memory. This will be the first byte of the desired CHPX/PAPX.
bin table

Each FKP can be viewed as bucket or bin that contains the properties of a certain range of FCs in the Word file. In Word files, a PLC, the plcfbte (PLex of FCs containing Bin Table Entries) is maintained. It records the association between a particular range of FCs and the PN (Page Number) of the FKP that contains the properties for that FC range in the file. In a complex (fast-saved) Word document, FKP pages are intermingled with pages of text in a random pattern which reflects the history of past fast saves. In a complex document, a plcfbteChpx which records the location of every CHPX FKP must be stored and a plcfbtePapx which records the location of every PAPX FKP must be stored. In a non-complex, full-saved document, all of the CHPX FKPS are recorded in consecutive 512-byte pages with the FKPs recorded in ascending FC order, as are all of the PAPX FKPS. In a non-complex document, at least the first FKP page number will be recorded so that the beginning of the consecutive range of pages may be located. However, the bin table may be incomplete because of resource constraints placed on Word's save procedures.

If a plcfbte is incomplete, the page numbers of the first n FKPs will be recorded but the last m FKPs would not be represented. The complete plcfbte may be reconstructed by the reader because the total number of CHPX FKPs and PAPX FKPs is recorded in the FIB. When a reader notices that the number of entries in a plcfbte is less than the number of FKP pages that was recorded in the FIB, the reader must locate the last PN recorded in the plcfbte, call it pnLast. If the number of missing page entries is m, the reader would have to read pages pnLast+1 through pnLast+m and record the first fc stored in each of the tables plus the last fc of page pnLast+1 to produce a complete plcfbte.

SEP(SEction Properties)
The data structure describing the properties of a particular section.

SEPX(SEction Property EXceptions)
A data structure describing how the properties of a particular section differ from a Word-defined standard SEP. As in the PAPX, the differences between the SEP for a section and the standard SEP are encoded as list of sprms that describe how the standard SEP can be transformed into the section's SEP. By applying a SEPX's sprms to the standard SEP, it is possible to reconstitute the SEP for that section.

The PLCFSED, a data structure stored in a Word file, records the locations of all SEPXs stored in a Word file. The array of CPs in the plcfsed records the boundaries of sections in the Word document . The second array in the plcf, an array of SEDs (SEction Descriptors), is in 1-to-1 correspondence to the array of CPs. Each SED stores the beginning FC of the SEPX that records the properties for a section. If the FC stored in a SED is -1, the section properties of the section are exactly equal to the standard section properties.

The SEP for a particular section may be constructed if a CP of a character in that section is known. First search the array of CPs in the PLCSED for the index of the largest CP that is less than or equal to the CP of the character. Use this index to locate the SED in the plcfsed which describes the section. The FC stored in the SED is the offset from the beginning of the Word file at which the SEPX is stored. If the stored FC is equal to 0xFFFFFFFF, then the SEP for the section is exactly equal to the standard SEP (see SEP structure definition) Otherwise, read the SEPX into memory and create a copy of the standard SEP. Finally, apply the sprms stored in the SEPX to the standard SEP to produce the SEP for a section.

DOP (DOcument Properties)
The data structure describing properties that apply to the document as a whole.

sub-document

A separate logical stream of text with properties for which correspondences with the main document text are maintained. Word's headers/footers, footnotes, endnotes, macro procedure text, annotation text, and text within textboxes are kept in separate subdocuments. Each subdocument has its own CP coordinate space. In other words, data structures are stored in Word files that are components of these subdocuments. These data structures contain CP coordinates whose 0 point is the beginning of the subdocument text stream instead of the beginning of the main document text stream.

In full-saved documents, a simple calculation with values stored in the FIB produces the file offset of the beginning of the subdocument text streams (if they exist). The length of these streams is also stored.

In fast-saved documents, the piece tables of subdocuments are concatenated to the end of the main document piece table. In this case, to identify the beginning of subdocument text , you must sum the length of the main document text stream with the lengths of any subdocument text streams stored ahead of the subdocument (information stored in the FIB) and treat this sum as a CP coordinate. To retrieve the text of the subdocument, you must do lookups in the piece table, starting with the piece that contains the beginning CP coordinate, to find the physical location of each piece of the subdocument text stream.

field

A field is a two-part structure that may be recorded in the CP stream of a document. The first part of the structure contains field codes which instruct Window's Word to insert text into the second part of the structure, the field result. Fields in Window's Word are used to insert text from an external file or to quote another part of a document, to mark index and table of contents entries and produce indexes and tables of contents, maintain DDE links to other programs, to produce dates, times,page numbers, sequence numbers, etc. There are 84 different field types.

A field begin mark delimits the beginning of a field and precedes any of the field codes stored in the field. The end of the field codes and the beginning of the field result is marked with the field separator and the field result and the field itself are terminated by a field end mark.

The CP locations of the field begin mark, field separator, and field end mark are recorded in plcfld data structures that are maintained for the main document and all of the subdocuments of the main document whenever a field is inserted or edited. An array of two-byte FLD structures is stored in the plcfld in one-to-one correspondence with the CP entries recorded. An FLD associated with a field begin mark records the type of the field. An FLD associated with the field end mark records the current status of the field (ie. whether the result is dirty or has been edited, whether the result has been locked, etc.)

Fields may be nested. 20 levels of nesting are permitted.

bookmark

A bookmark associates a user definable name with a range of text within a document. A bookmark is frequently used as an operand in field code instructions within a field. In Window's Word a bookmark is represented by three parallel data structures, the sttbBkmk, the plcbkf and the plcbkl. The sttbBkmk is a string table which contains the name of each bookmark that is defined. The plcbkf records the beginning CP position of each bookmark. The plcbkl records the limit CP position that delimits the end of a bookmark. Since bookmarks may be nested within one another to any level, the BKF structure stored in the plcbkf consists of a single index which specifies which plcbkl marks the end of the bookmark. Similarly, the BKL structure stored in the plcbkl consists of a single index which specifies which plcbkf marks the beginning of the bookmark.

picture

A picture is represented in the document text stream as a special character, an ASCII 1 whose CHP has the fSpec bit set to 1. The file location of the picture in the Word binary file is stored in the character’s CHP in chp.fcPic. For Windows Word, a picture may be a Window's metafile, a bitmap or a reference to a TIFF file. Beginning at the position recorded in chp.fcPic, a header data structure, the PIC, will be stored. If the picture is a Window's metafile or a bitmap, the metafile or bitmap will immediately follow the PIC. If the picture is a TIFF file, the filename of the TIFF file will be recorded immediately following the PIC.

embedded objectxe "Embedded Object"
The native data for Embedded objects (OBJs) is stored similarly to pictures (PICs). To locate the native data for Embedded objects, scan the plc of field codes for the mother, header, footnote and annotation, textbox and header textbox documents (fib.PlcffldMom/Hdr/Ftn/Atn/Txbx/HdrTxbx). For each separator field, get the chp. If chp.fSpec=1 and chp.fObj=1, then this seperator field has an associated embedded object. The file location of the object data is stored in chp.fcObj. At the specified location an object header is stored followed by the native data for the object. See the _OBJHEADER structure.

drawing objectxe "Embedded Object"
REVIEW Dave

A drawing object is represented in the document stream as a special character, an ASCII 8, which has chp.fSpec set to 1 for the run of text containing the character . Only main documents and header documents contain drawing objects. The native data for the drawing object my be obtained by taking the CP for the special character and using this to find the corresponding entry in the plcfdoa. An entry in this plc consists of an FC pointing to the DO structure and a ctxbx, which is the count of text boxes in the drawing object. Text for the textboxes is stored separately in the textbox subdocument of the main or header document. The textbox subdocument contains a plctxbx where the text from CP n to CP n+1 in the subdocument is the text which is contained in the nth textbox of the superior document. Ordering of textboxes is based upon CP order of the DOs in the superior document, and order of the textboxes within the DO itself. For example, if a document contains 1 DO at CP 500 which contains 3 textboxes and a DO at CP 600 which contains 10 textboxes, then the text for the 4th textbox in the second DO would be stored at the CP specified by the 6th entry in the plctxbx.

Note: In this document, bit 0 is the low-order bit. Structures are described as they would be declared in C for the Intel architecture. When numbering bytes in a word from low offset towards high offset, two-byte integers will have their least significant eight bits stored in byte 0 and most significant eight bits in byte 1. If bit 31 is the most significant bit in a four-byte integer, bits 31 through 24 will be stored in byte 3 of a four-byte integer, bits 23 through 16 will be stored in byte 2, bits 15 through 8 will be stored in byte 1, and bits 7 through 0 will be stored in byte 0.

NAMING CONVENTIONS

The names in Word data structures usually consist of a lower case sequence of characters followed by an optional upper case modifier. The following tags are used in the lower case parts of field names to document the data type of a field:

f
used to name a flag (a variable containing a Boolean value). Usually the object referred to will contain either 1 (fTrue, TRUE) or 0 (fFalse, FALSE). (eg. fWidowControl, fShadow)

l
used to name a 4 byte integer value (a long). (eg. lcb)

w
used to name a 2 byte integer value (a short).

b
used to name a 1 byte integer value

cp
used to name a variable that contains a character position within the document. always a 4 byte quantity.

fc
used to name a variable that contains an offset from the beginning of a file. always a 4 byte quantity.

xa
used to name a variable that contains a width of an object imaged on screen or on hard copy that is measured in units of 1/1440 of an inch. This unit which is one-twentieth of a point size (1/20 * 1/72”) is called a twip in this documentation. (eg. xaPage is the width of a page).

ya
used to name a variable that contains a height of an object imaged on screen or on hard copy that is measured in twips.

dxa
used to name a variable that contains the horizontal distance of an object measured from some reference point expressed in twips. (eg. pap.dxaLeft is the distance of the left boundary of a paragraph measured from the left margin of the page)

dya
used to name a variable that contains the vertical distance of an object measured from some reference point expressed in twips. (eg. pap.dyaAbs is the vertical distance of the top of a paragraph from a reference frame declared in the pap).

dxp
used to name a variable that contains the horizontal distance of an object measured from some reference point expressed in Macintosh pixel units (1/72”). (eg. dxpSpace)

dyp
used to name a variable that contains the vertical distance of an object measured from some reference point expressed in Macintosh pixel units (1/72”).

rg
prefix used to signify that the data structure being defined is an array. (eg.rgb (an array of bytes), rgcp (an array of cps), rgfc (an array of fcs), rgfoo (an array of foos).

i
prefix used to signify that an integer value is used as an index into an array. (eg. itbd is an index into rgtbd, itc is an index into rgtc.)

c
prefix used to signify that an integer value is a count of some number of objects. (eg. a cb is a count of bytes, a cl is a count of lines, ccol is a count of columns, a cpe.is a count of picture elements.)

grp
prefix used to name an array of bytes that contains one or more copies of a variable length data structure with the instances of the data structure stored one after the other in the array. (eg. a grpprl is a array of bytes that stores a group of prls.)

grpf
prefix used to name an integer or byte value whose bits are used as flags. (eg. grpfIhdt is a group of flags that records the types of headers that are stored for a particular section of a document).

The two following modifiers are used occasionally in this documentation:

First
means that variable marks the first of a range of objects. For example, cpFirst would mark the first character position of a range of characters in a document. fcFirst would mark the file offset of the first byte of a range of bytes stored in a file.

Lim
means the variable marks the limit of a range of objects (ie. is the index of the last object in a range plus 1). For example, cpLim would be the limit CP of a range of characters in a document. fcLim would be the limit file offset of a range of bytes stored in a file.

WORD AND DOCFILES

Word 6.0 is an OLE 2.0 application. A Word binary file is a docfile and Word binary data is written into streams within the docfile using the OLE 2.0 docfile APIs. To access data within a Word binary file, the file must be opened using the OLE 2.0 docfile APIs.

A word docfile consists of a main stream, a summary information stream, and 0 or more object streams which contain private data for OLE 2.0 objects embedded within the Word document. The summary information stream is described in the section immediately following this one. The object streams contain binary data for embedded objects. Word has no knowledge of the contents of these streams; this information is accessed and manipulated though the OLE 2.0 APIs. The main stream of the Word docfile contains all other binary data. The majority of this document describes the contents of the main stream.

FORMAT OF THE SUMMARY INFO STREAM IN A WORD FILE

Summary information is stored with the stream named ”SummaryInformation”. This summary information consists of the following elements:

FORMAT OF THE MAIN STREAM IN A WORD NON-COMPLEX FILE

The main stream of a Word docfile (non-complex format) consists of the Word file header (FIB), the text, and the formatting information.

FIB

Stored at beginning of page 0 of the file. fib.fComplex will be set to zero.

text of body, footnotes, headers
Text begins at the position recorded in fib.fcMin.

group of SEPXs
SEPXs immediately follow the text and are concatenated one after the other. A SEPX may not span a 512-byte page boundary. If a SEPX will not fit in the space that remains in a page from recording previous text or SEPXs, space is skipped to allow the SEPX to start on a page boundary. A SEPX is guaranteed to be less than 512 bytes in length. If all sections in the document have default properties, no SEPXs would be stored.

pictures

Word picture structures immediately follow the preceding text/SEPXs and are concatenated one after the other if the document contains pictures.

embedded objectxe "Embedded Object"s-native data
Word embedded object structures immediately follow the preceding text/SEPXs/picture and are concatenated one after the other if the document contains embedded objects.

FKPs for CHPs
The first CHP FKP begins at the first 512-byte boundary after the last byte of text\SEPX\picture\embedded objects written. The remaining CHP FKPs are recorded in the 512-byte pages that immediately follow.

FKPs for PAPs

The first PAP FKP is written in the 512-byte page that immediately follows the page used to record the last CHP FKP. The remaining PAP FKPs are recorded in the 512-byte pages that follow.

stsh (style sheet)

The style sheet is written at the beginning of the 512-byte page that immediately follows the last PAP FKP. This is recorded in all Windows Word documents.

plcffndRef (footnote reference position table)

Written immediately after the stsh if the document contains footnotes.

plcffndTxt (footnote text position table)

Written immediately after the plcffndRef.if the document contains footnotes.

plcfandRef (annotation reference position table)

Written immediately after the plcffndTxt if the document contains annotations.

plcfandTxt (annotation text position table)

Written immediately after the plcfandRef.if the document contains footnotes.

plcfsed (section table)

Written immediately after the previously recorded table. Recorded in all Windows Word documents.

plcfphe (paragraph height table)

Written immediately after the plcfsed, if paragraph heights have been recorded.

plcfpgd (page table)

Written immediately after the previously recorded table, if page boundary information is recorded.

sttbGlsy (glossary name string table)

Written immediately after the previously recorded table, if the document stored is a glossary.

plcfglsy (glossary entry text position table)

Written immediately after the sttbGlsy, if the document stored is a glossary.

plcfhdd (header text position table)

Written immediately after the previously recorded table, if the document contains headers or footers.

plcfbteChpx (bin table for CHP FKPs)

Written immediately after the previously recorded table. This is recorded in all Windows Word documents.

plcfbtePapx (bin table for PAP FKPs)

Written immediately after the plcfbteChpx. This is recorded in all Windows Word documents.

sttbfFnxe "sttbfFn" (table of font name strings)
Written immediately after the plcfbtePapx. This is recorded in all Windows Word documents. The names of the fonts correspond to the ftc codes in the CHP structure. For example, the first font name listed corresponds is the name for ftc = 0
.

plcffldMom(table of field positions and statuses for main document)
Written immediately after the sttbfFn if the main document contains fields.

plcffldHdr(table of field positions and statuses for header subdocument)
Written immediately after the previously recorded table, if the header subdocument contains fields.

plcffldFtn(table of field positions and statuses for footnote subdocument)
Written immediately after the previously recorded table, if the footnote subdocument contains fields.

plcffldAtn(table of field positions and statuses for annotation subdocument)
Written immediately after the previously recorded table, if the annotation subdocument contains fields.

plcffldMcr(table of field positions and statuses for macro subdocument)
Written immediately after the previously recorded table, if the macro subdocument contains fields.

sttbfBkmk(table of bookmark name strings)
Written immediately after the previously recorded table, if the document contains bookmarks.

plcfBkmkf(table recording beginning CPs of bookmarks)
Written immediately after the sttbfBkmk, if the document contains bookmarks.

plcfBkmkl(table recording limit CPs of bookmarks)
Written immediately after the plcfBkmkf, if the document contains bookmarks.

cmds (recording of command data structures)

Written immediately after the previously recorded table, if special commands are linked to this document.

plcfmcr (macro text position table -- delimits boundaries of text for macros stored in macro
subdocument)

Written immediately after the previously recorded table, if a macro subdocument is recorded.

sttbfMcr (table of macro name strings)

Written immediately after the plcfmcr, if a macro subdocument is recorded.

PrEnv (data structures recording the print environment for document)

Written immediately after the previously recorded table, if a print environment is recorded for the document.

wss (window state structure)
Written immediately after the end of previously recorded structure, if the document was saved while a window was open.

dop (document properties record)

Written immediately after the end of previously recorded structure.. This is recorded in all Windows Word documents.

sttbfAssocxe "sttbfAssoc"(table of associated strings)

Autosavexe "Autosave source" source(name of original)

Written immediately after the sttbfAssoc table. This field only appears in autosave files. These files are normal Word for Windows document in every other way. Also, autosaved files are typically in the complex file format except that we don't overwrite the tables (plcf*, etc.). I.e., an autosaved file is typically longer than the equivalent Word for Windows document.

FORMAT OF THE MAIN STREAM IN A COMPLEX FILE

The main stream of a Word binary file (complex format) consists of the Word file header (FIB), the text, and the formatting information.

FIB

Text of body, footnotes, headers stored during last full save
Text begins at the position recorded in fib.fcMin.

Group of SEPXs stored during last full save
Pictures stored during last full save

Embedded Ojbectxe "Embedded Object"s stored during last full save

Drawing Objects stored during last full save

FKPs for CHPs during last full save
The first CHP FKP begins at the first 512-byte boundary after the last byte of text\SEPX\picture\embedded object written. The remaining CHP FKPs are recorded in the 512-byte pages that immediately follow.

FKPs for PAPs during last full save

The first PAP FKP is written in the 512-byte page that immediately follows the page used to record the last CHP FKP. The remaining PAP FKPs are recorded in the 512-byte pages that follow.

STSH (if style sheet has not grown since last full save)
Any text, SEPXs, pictures, embedded objects, or drawing objects stored during first fast save

Any CHP FKPs stored during first fast save
Any PAP FKPs stored during first fast save
Any text, SEPXs,pictures, embedded objects, or drawing objects stored during second fast save

Any CHP FKPs stored during second fast save
Any PAP FKPs stored during second fast save
...

Any text, SEPXs, pictures, embedded objects, or drawing objects stored during nth fast save

Any CHP FKPs stored during nth fast save
Any PAP FKPs stored during nth fast save
stsh (if style sheet has grown since last full save)

plcffndRef (footnote reference position table)

Written immediately after the stsh if the document contains footnotes.

plcffndTxt (footnote text position table)

Written immediately after the plcffndRef.if the document contains footnotes.

plcfandRef (annotation reference position table)

Written immediately after the plcffndTxt if the document contains annotations.

plcfandTxt (annotation text position table)

Written immediately after the plcfandRef.if the document contains footnotes.

plcfsed (section table)

Written immediately after the previously recorded table. Recorded in all Windows Word documents.

plcfphe (paragraph height table)

Written immediately after the plcfsed, if paragraph heights have been recorded.

plcfpgd (page table)

Written immediately after the previously recorded table, if page boundary information is recorded.

sttbGlsy (glossary name string table)

Written immediately after the previously recorded table, if the document stored is a glossary.

plcfglsy (glossary entry text position table)

Written immediately after the sttbGlsy, if the document stored is a glossary.

plcfhdd (header text position table)

Written immediately after the previously recorded table, if the document contains headers or footers.

plcfbteChpx (bin table for CHP FKPs)

Written immediately after the previously recorded table. This is recorded in all Windows Word documents.

plcfbtePapx (bin table for PAP FKPs)

Written immediately after the plcfbteChpx. This is recorded in all Windows Word documents.

sttbfFnxe "sttbfFn" (table of font name strings)
Written immediately after the plcfbtePapx. This is recorded in all Windows Word documents. The names of the fonts correspond to the ftc codes in the CHP structure. For example, the first font name listed corresponds is the name for ftc = 01 .

sttbRMark (table of Author names for Revision Marking)

Written immediately after the plcfbtePapx if revision marking is being tracked in the document. (REVIEW davidlu Each record in the sttb stores a 2-byte length extra portion, which contains undefined data. David, no definition of an sttb is given in this document, thus no definition of ”extra” data in an sttb is given.)

plcffldMom(table of field positions and statuses for main document)
Written immediately after the sttbfFn if the main document contains fields.

plcffldHdr(table of field positions and statuses for header subdocument)
Written immediately after the previously recorded table, if the header subdocument contains fields.

plcffldFtn(table of field positions and statuses for footnote subdocument)
Written immediately after the previously recorded table, if the footnote subdocument contains fields.

plcffldAtn(table of field positions and statuses for annotation subdocument)
Written immediately after the previously recorded table, if the annotation subdocument contains fields.

plcffldMcr(table of field positions and statuses for macro subdocument)
Written immediately after the previously recorded table, if the macro subdocument contains fields.

sttbfBkmk(table of bookmark name strings)
Written immediately after the previously recorded table, if the document contains bookmarks.

plcfBkmkf(table recording beginning CPs of bookmarks)
Written immediately after the sttbfBkmk, if the document contains bookmarks.

plcfBkmkl(table recording limit CPs of bookmarks)
Written immediately after the plcfBkmkf, if the document contains bookmarks.

cmds (recording of command data structures)

Written immediately after the previously recorded table, if special commands are linked to this document.

plcfmcr (macro text position table -- delimits boundaries of text for macros stored in macro
subdocument)

Written immediately after the previously recorded table, if a macro subdocument is recorded.

sttbfMcr (table of macro name strings)

Written immediately after the plcfmcr, if a macro subdocument is recorded.

PrEnv (data structures recording the print environment for document)

Written immediately after the previously recorded table, if a print environment is recorded for the document.

wss (window state structure)
Written immediately after the end of previously recorded structure, if the document was saved while a window was open.

pms (print/mail merge state information structure)

Written immediately after the end of previously recorded structure, (REVIEW davidlu;stevebu;jayb)

sttbEmbeddedFonts (table of font name strings for Embedded True Type Fonts stored in the file)
Written immediately after the end of the previously recorded structure, if Embedded True Type Fonts were stored in the document when it was saved.

rgfcEmbeddedFonts (array of FCs bounding the Embedded font data)

Written immediately after the end of the sttbEmbeddedFonts, if the file contains an sttbEmbeddedFonts. The binary data for the embedded font corresponding to font n in sttbEmbeddedFonts is stored in the main stream at file position rgfc[n], and has a length of rgfc[n+1] - rgfc[n].

Clx (encoding of the sprm lists and piece table for a complex file)

Written immediately after the end of previously recorded structure. This is recorded in all complex Windows Word documents.

dop (document properties record)

Written immediately after the end of previously recorded structure.. This is recorded in all Windows Word documents.

sttbfAssocxe "sttbfAssoc"(table of associated strings)

Autosave sourcexe "Autosave source" (documented above)

FIB

The FIB contains a "magic word" and pointers to the various other parts of the file, as well as information about the length of the file. The FIB starts at the beginning of the file and fits within the first page of the file. The FIB is defined in the structure definition section of this document.

TEXT

The text of the file starts at fib.fcMin. fib.fcMin is usually set to the next 128 byte boundary after the end of the FIB. The text in a Word document is ASCII text with the following restrictions (ASCII codes given in decimal):

-
Paragraph ends are stored as a single <Carriage Return > character (ASCII 13). No other occurrences of this character sequence are allowed.

-
Hard line breaks which are not paragraph ends are stored as ASCII 11. Other line break or word wrap information is not stored.

-
Breaking hyphens are stored as ASCII 45 (normal hyphen code); Non-required hyphens are ASCII 31. Non-breaking hyphens are stored as ASCII 30.

-
Non-breaking spaces are stored as 160. Normal spaces are ASCII 32.

-
Page breaks and Section marks are ASCII 12 (normal form feed); if there's an entry in the section table, it's a section mark, otherwise it's a page break.

-
Column breaks are stored as ASCII 14.

-
Tab characters are ASCII 9 (normal).

-
The field begin mark which delimits the beginning of a field is ASCII 19. The field end mark which delimits the end of a field is ASCII 21. The field separator ,which marks the boundary between the preceding field code text and following field expansion text within a field, is ASCII 20. The field escape character is the '\' character which also serves as the formula mark.

-
The cell mark which delimits the end of a cell in a table row is stored as ASCII 7 and has the fInTable paragraph property set to fTrue (pap.fInTable == 1).

-
The row mark which delimits the end of a table row is stored as ASCII 7 and has the fInTable paragraph property and fTtp paragraph property set to fTrue (pap.fInTable == 1 && pap.fTtp == 1).

The following ASCII codes are treated as "special" characters when they have the character property special on (chp.fSpec == 1):

0
Current page number

1
Picture

2
Autonumbered footnote reference.

3
Footnote separator character

4
Footnote continuation character

5
Annotation reference

6
Line number

7
Hand Annotation picturexe "Hand Annotation" (Generated in Pen Windows)

8
Drawn object

10
Abbreviated date (eg. ”Wed, Dec 1, 1993”)

11
Time in hours:minutes:seconds

12
Current section number

14
Abbreviated day of week (eg. ”Thu” for ”Thursday”)

15
Day of week (eg. ”Thursday”)

16
Day short (eg. ”9” for the ninth day of the month)

22
Hour of current time with no leading zero

23
Hour of current time (two digit with leading zero when necessary)

24
Minute of current time with no leading zero

25
Minute of current time(two digit with leading zero when necessary)

26
Seconds of current time

27
AM/PM for current time

28
Current time in hours:minutes:seconds in old format

29
Date M (eg. ”December 2, 1993”)

30
Short Date (eg. ”12/2/93”)

33
Short Month (eg. ”12” to represent ”December”)

34
Long Year (eg. ”1993”)

35
Short Year (eg. ”93”)

36
Abbreviated month (eg. ”Dec” to represent ”December”)

37
Long month (eg. ”December”)

38
Current time in hours:minutes (eg. ”2:01”)

39
Long date (eg. ”Thursday, December 2, 1993”)

41
Print Merge Helper field

Note: The end of a section is also the end of a paragraph. The last character of a section is a section mark which stands in place of the paragraph mark normally required to end a paragraph. An exception is made for the last character of a document which is always a paragraph mark although the end of a document is always an implicit end of section.

If !fib.fComplex, the document text stream is represented by the text beginning at fib.fcMin up to (but not including) fib.fcMac. Otherwise, the document is represented by the piece table stored in the file in the data beginning at .fib.fcClx.

The document text stream includes text that is part of the main document, plus any text that exists for the footnote, header, macro, or annotation subdocuments. The sizes of the main document and the header, footnote, macro and annotation subdocuments are stored in the fib, in variables fib.ccpText, fib.ccpFtn, fib.ccpHdr, fib.ccpMcr, fib.ccpEdn, fib.ccpTxbx, fib.ccpHdrTxbox and fib.ccpAtn respectively. In a non-complex file, this means that the text of the main document begins at fib.fcMin in the file and continues.through fib.fcMin + fib.ccpText; that the text of the footnote subdocument begins at fib.fcMin + fib.ccpText and extends to fib.fcMin + fib.ccpText + fib.ccpFtn;that the text of the header subdocument begins at fib.fcMin + fib.ccpText + fib.ccpFtn and extends to fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdr; that the text of the annotation subdocument begins at .fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdr and extends to fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdr + ccpAtn;that the text of the endnote subdocument begins at .fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdr +ccpAtn and extends to fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdr + fib.ccpEdn; that the text of the textbox subdocument begins at .fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdr +fib.ccpAtn + fib.ccpEdn and extends to fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdr + fib.ccpEdn + fib.ccpTxbx andthat the text of the header textbox subdocument begins at .fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdr +fib.ccpAtn + fib.ccpEdn + fib.ccpTxbx and extends to fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdr + fib.ccpEdn + fib.ccpTxbx + fib.ccpHdrTxbx.

In a complex, fast-saved file, the main document text must be located by examining the piece table entries from the 0th piece table entry through the piece table entry that describes cp = fib.ccpText.

A footnote subdocument's text must be located by examining the piece table entries beginning with the one that describes cp=fib.ccpText through the entry that describes cp = fib.ccpText + fib.ccpFtn.

A header subdocument's text must be located by examining the piece table entries beginning with the one that describes cp=fib.ccpText + ccpFtn through the entry that describes cp = fib.ccpText +fib.ccpFtn + fib.ccpHdr.

An annotation subdocument's text must be located by examining the piece table entries beginning with the one that describes cp=fib.ccpText + ccpFtn + fib.ccpHdr through the entry that describes cp = fib.ccpText +fib.ccpFtn + fib.ccpHdr +fib.ccpAtn.

An endnote subdocument's text must be located by examining the piece table entries beginning with the one that describes cp=fib.ccpText + ccpFtn + fib.ccpHdr + fib.ccpAtn through the entry that describes cp = fib.ccpText +fib.ccpFtn + fib.ccpHdr +fib.ccpAtn.+ fib.ccpEdn

A textbox subdocument's text must be located by examining the piece table entries beginning with the one that describes cp=fib.ccpText + ccpFtn + fib.ccpHdr + fib.ccpAtn + fib.ccpEdn through the entry that describes cp = fib.ccpText +fib.ccpFtn + fib.ccpHdr +fib.ccpAtn.+ fib.ccpEdn + fib.ccpTxbx

A header textbox subdocument's text must be located by examining the piece table entries beginning with the one that describes cp=fib.ccpText + ccpFtn + fib.ccpHdr + fib.ccpAtn + fib.ccpEdn + fib.ccpTxbx through the entry that describes cp = fib.ccpText +fib.ccpFtn + fib.ccpHdr +fib.ccpAtn.+ fib.ccpEdn + fib.ccpTxbx+ fib.ccpHdrTxbx

CHARACTER AND PARAGRAPH FORMATTING PROPERTIES

Character and paragraph properties in Word documents are stored in a compressed format. The information that is stored on disk is not the actual properties of a particular sequence of text but the difference of the properties of a sequence from some reference property.

The PAP is a data structure that holds uncompressed paragraph property information; the CHP (pronounced like "chip") is a structure that holds uncompressed character property information .Each paragraph in a Word document inherits a default set of paragraph and character properties from one of the paragraph styles recorded in the style sheet data structure (STSH).

A particular PAP is converted into its compressed form, the PAPX, by first comparing the pap for a paragraph with the pap stored in the style sheet for the paragraph's style. Any properties in the paragraph's PAP that are different from those stored in the style sheet PAP are encoded as a list of sprms (grpprl). sprms express how the content of the style sheet PAP should be transformed to create the properties for the paragraph. A PAPX is a variable-length data structure that begins with a count of words that encodes the PAPX length. It contains a istd (index to style descriptor) which specifies which style entry in the style sheet contains the default paragraph and character properties for the paragraph, paragraph height information, and the list of difference sprms. If the only difference between the paragraph's PAP and the style's PAP were in the justification code field, which is one byte long, one two-byte sprm, sprmPJc, would be generated to express that difference; thus the total PAPX size would be 5 bytes. This is better than 54-1 compression since the total size of a PAP is 274 bytes.

To convert a CHP for a sequence of characters contained within a single paragraph into its compressed form, the CHPX, it's first necessary to know the paragraph style that is assigned to the paragraph containing those characters and any character style that may be tagging the character run. The character properties inherited from the paragraph style are moved into a buffer. If the chp.istd of the chp to be compressed is not istdNormalChar, the changes recorded for that character style are applied to buffer. Then the character properties of the character sequence are compared with the character properties generated using the paragraph's style and the run’s character style. . Any properties in the paragraph's CHP that are different from those stored in the generated CHP are encoded as a list of sprms (grpprl). The sprms express how the content of the CHP generated from the paragraph and character styles should be transformed to create the character properties for the text run. A CHPX is a variable-length data structure that begins with a count of words that encodes the CHPX length followed by the list of difference sprms.
If one of the bit fields in the CHP to be compressed such as fBold is different from the reference CHP, you would build a difference sprm using sprmCFBold in the first byte and the bytes pattern 0x81 in the second byte which signifies that the value of the bit in the CHP to be compressed is of opposite value from the value stored in the reference CHP. If there was no difference, sprmCFBold would not be recorded in the grrprl to be generated. If there were difference in a field larger than a single bit such as the chp.hps, a sprmCHps would be generated to record the value of chp.hps in the chp to be compressed. If the chp.hps were equal in both the chp to be compressed and the reference CHP, sprmCHps would not be recorded in the grrprl that is generated. If a sequence of characters has the same character properties and the sequence spans more than one paragraph, it's necessary to examine each paragraph's properties and to generate a different CHPX every time there is a change of style.

In Word documents, the fundamental unit of text for which character exception information is kept is the run of exception text, a contiguous sequence of characters stored on disk that all have the same exception properties with respect to their underlying style character properties. Each run would have an entry recorded in a CHPX FKP. If a user never changed the character properties inherited from the styles used in his document and did a complete save of his document, although each of those styles may have different properties, the entire document stream would be one large run of exception text and one CHPX would suffice to describe the character properties of the entire document.

The fundamental unit of text for which paragraph properties are recorded is the paragraph. Every paragraph has an entry recorded in a PAPX FKP.

The CHPX FKP and the PAPX FKP have similar physical structures. An FKP is a 512-byte data structure that is stored in one page of a Word file. At offset 511 is a 1-byte count named crun, which is a count of runs of exception text for CHPX FKPs and which is a count of paragraphs in PAPX FKPs. Beginning at offset 0 of the FKP is an array of crun+1 FCs, named rgfc, which records the beginning and limit FCs of crun runs of exception text or paragraphs.

For CHPX FKPs, immediately following fkp.rgfc is a byte array of crun word offsets to CHPXs from the beginning of the FKP. This byte array, named rgb, is in 1-to-1 correspondence with the rgfc. The ith rgb gives the word offset of the exception property that belongs to the run\paragraph whose beginning
For PAPX FKPSs, immediately following the fkp.rgfc is an array of 7 byte entries called BXs. This array called the rgbx is in 1-to-1 correspondence with the rgfc. The first byte of the ith BX entry contains a single byte field which gives the word offset of the PAPX that belongs to the paragraph whose beginning in FC space is rgfc[i] and whose limit is rgfc[i+1] in FC space. The last six bytes of the ith BX entry contain a PHE structure that stores the current paragraph height of the paragraph whose beginning in FC space is rgfc[i] and whose limit is rgfc[i+1] in FC space.
The fact that the offset to property stored in the rgb or rgbx is a word offset implies that CHPXs and PAPXs are stored in FKPs beginning on word boundaries. Since the values stored in the rgb/rgbx allow random access throughout the FKP, space within an FKP can be conserved by storing the offset of the same physical CHPX/PAPX in rgb/rgbx entries when several runs or paragraphs in the FKP have the same properties. Word uses this optimization.

 An rgb or rgbx[].b value of 0 is used in another optimization. When a rgb or rgbx[].b value of 0 is stored in an FKP, it means that instead of referring to a particular CHPX/PAPX in the FKP the 0 value is a signal that the reader should construct for itself a commonly encountered predefined set of properties.

For CHPX FKPs a 0 rgb value means that the properties of the run of text were exactly equal to the character properties inherited from the style of the paragraph it was in. For PAPX FKPs, a 0 rgbx[].b value means that the paragraph’s properties were exactly equal to the paragraph properties of the Normal style (stc == 0) and the paragraph contained 1 line of 240 pixels, with a column width of 7980 dxas.

When new entries are added to an FKP, there must be unallocated space in the middle of the FKP equal to 5 bytes for CHPXs (size of an FC plus size of one-byte word offset) or 11 bytes for PAPXs (size of an FC plus the size of a seven byte BX entry), plus the size of the new CHPX or PAPX if the property being added is not already recorded in the FKP and is not the property coded with a 0 rgb/rgbx[].b value. To add a new property in a CHPX FKP, existing rgb entries are moved four bytes to the right in the FKP. . To add a new property in a PAPX FKP, existing rgbx entries are moved four bytes to the right in the FKP. The new FC is added at the end of the rgfc. The new CHPX or PAPX is recorded on a 2-byte boundary before the previously recorded properties stored at the end of the block. The word offset of the beginning of the CHPX or PAPX is stored as the last entry of the relocated rgb/rgbx[].b, and finally, the crun stored at offset 511 is incremented.
BIN TABLES

A bin table (plcfbte) partitions the total extent of the Word file that contains text characters into a set of contiguous intervals marked by a fcFirst and an fcLim. The fcFirst for the nth interval would be plcfbte.rgfc[n] and the fcLim for the nth interval would be plcfbte.rgfc[n+1]. Associated with each interval is a BTE. A BTE holds a two-byte PN (page number) which identifies the FKP page in the file which contains the formatting information for that interval. A CHPX FKP further partitions an interval into runs of exception text. A PAPX FKP in a non-complex, full-saved file, partitions the text within intervals into paragraphs. If a file is in complex format (has been fast-saved), the PAPX FKP only records the FCs within the text that are preceded by a paragraph mark. Even though a sequence of text may be physically located between two paragraph end marks, it may reside in a paragraph different from the one defined by the following paragraph end mark, because the text may have been moved by the user into a different paragraph. In the logical text stream represented by the document's piece table, the paragraph mark that follows the moved text is stored in a non-adjacent physical location in the file.

STYLESHEET

A stylesheet is a collection of styles. In Word, each document has its own stylesheet.

A style is a set of formatting information collected together and given a name. Word 6.0 supports paragraph and character styles, previous versions supported only paragraph styles. Character styles have just one type of formatting, paragraph styles have both character and paragraph formatting. The style sheet establishes a correspondence between a style code and a style definition.

Note that the storage and behavior of styles has changed radically since WinWord 2, beginning with nFib 63. Some of the differences are:

Character styles are supported.

The style code is called an istd, rather than an stc.

The istd is a short, where the stc was a byte.

The range of the istd is 0-4095, where 4095 is the null style. The range of the stc was 0-256, with 222 as the null style.

PAPX's have a short istd at the beginning, rather than a byte stc.

CHPX's are a grpprl, not a CHP.

Many other changes...

This document describes only the final Word 6.0 version of the stylesheet, not the Word 2.x version.

The styles for a document (both paragraph and character styles) are stored in an array in each document.
 When new styles are created, they are added to the end of the array. The array can have unused slots. Some slots at the beginning of the array are reserved for specific styles, whether they have been created yet or not.
 Paragraph and character styles are stored in the same array. Each document has a separate array, so the same style will usually
 have a different istd in two different documents. Thus style matching between documents must be done by name (or by sti if the styles are built-in.)

Styles are usually referred to using an istd. The istd is an index into an array of STD's (STyle Descriptions). A (doc, istd) pair uniquely identifies a style because it tells which style in which array.

Parts of a style (for more information, see the STD structure below):

sti: A style identifier. Built-in styles have an sti that indicates which built-in style they are. User-defined styles all have stiUser.

sgc: The type of style, either paragraph or character.

istdBase: The style that this style is based on.

istdNext: The style that should be applied after this one.

stzName: The name of a style, unique within its stylesheet.

UPX: The difference between this style and the one it is based on.

UPE: The properties of this style (a PAP, CHP, and/or grpprl).

Every paragraph has a paragraph style. Every character has a character style. The default paragraph style is Normal (stiNormal, istdNormal). The default character style is Default Paragraph Font (stiNormalChar, istdNormalChar).

The formatting of a paragraph (the PAP) and a character (the CHP) depend on the paragraph and character styles applied to them, as well as any additional formatting stored in the FKPs. The PAP and CHP are constructed in a layered fashion:

For a PAP:

1.
An initial PAP is determined by getting the PAP from the paragraph's style.

2.
Any paragraph formatting stored in the file (the FKP papx's) is then applied to that PAP.

For a CHP:

1.
An initial CHP is determined by getting the CHP from the paragraph's style.

2.
Properties from the character's style (the UPX.chpx.grpprl) are then applied to that CHP.

3.
Any character formatting stored in the file (the FKP chpx's) is the applied to that CHP.

Note that the resulting PAP and CHP have fields that indicate what style was applied: PAP.istd, CHP.istd.

Stylesheet File Format

The style sheet (STSH) is stored in the file in two parts, a STSHI and then an array of STDs. The STSHI contains general information about the following stylesheet, including how many styles are in it. After the STSHI, each style is written as an STD. Both the STSHI and each STD are preceded by a ushort that indicates their length.

Field
Size
Comment

cbStshi
2 bytes
size of the following STSHI structure

STSHI
(cbStshi)
Stylesheet Information

Then for each style in the stylesheet (stshi.cstd), the following is stored:

cbStd
2 bytes
size of the following STD structure

STD
(cbStd)
the style description

STSHI:

The STSHI structure has the following format:

// STSHI: STyleSHeet Information, as stored in a file

// Note that new fields can be added to the STSHI without invalidating

// the file format, because it is stored preceded by it's length.

// When reading a STSHI from an older version, new fields will be zero.

typedef struct _STSHI

{

ushort
cstd;
// Count of styles in stylesheet

ushort
cbSTDBaseInFile;
// Length of STD Base as stored in a file

BF
fStdStylenamesWritten : 1;
// Are built-in stylenames stored?

BF
: 15;
// Spare flags

ushort
stiMaxWhenSaved;

// Max sti known when this file was written

ushort
istdMaxFixedWhenSaved;
// How many fixed-index istds are there?

ushort
nVerBuiltInNamesWhenSaved;
// Current version of built-in stylenames

FTC
ftcStandardChpStsh;

// ftc used by StandardChpStsh for this document

} STSHI;

The cb preceding the STSHI in the file is the length of the STSHI as stored in the file. The current definition of the STSHI structure might be longer or shorter than that stored in the file, the stylesheet reader routine needs to take this into account.

stshi.cstd: The number of styles in this stylesheet. There will be stshi.cstd (cbSTD, STD) pairs in the file following the STSHI. Note that styles can be empty, ie. cbSTD == 0.

stshi.cbSTDBaseInFile: The STD structure (see below) is divided into a fixed-length "base", and a variable length part. The stshi.cbSTDBaseInFile indicates the size in bytes of the fixed-length base of the STD as it was written in this file. If the STD base is grown in a future version, the file format doesn't change, because the stylesheet reader can discard parts it doesn't know about, or use defaults if the file's STD is not as large as it was expecting. (Currently, stshi.cbSTDBaseInFile is 8.)

stshi.fStdStylenamesWritten: Previous versions of Word did not store the style name if the style was a built-in style; Word 6.0 does, for compatibility with future versions. Note that the built-in stylenames may need to be "regenerated" if the file is opened in a different language or if stshi.nVerBuiltInNamesWhenSaved doesn't match the expected value.

stshi.stiMaxWhenSaved: This indicates the last built-in style known to the version of Word that saved this file.

stshi.istdMaxFixedWhenSaved: Each array of styles has some fixed-index styles at the beginning. This indicates the number of fixed-index positions reserved in the stylesheet when it was saved.

stshi.nVerBuiltInNamesWhenSaved: Since built-in stylenames are saved with the document, this provides an way to see if the saved names are the same "version" as the names in the version of Word that is loading the file. If not, the built-in stylenames need to be "regenerated", ie. the old names need to be replaced with the new.

stshi.ftcStandardChpStsh: This is the default font for this stylesheet.

STD:

The style description is stored in an STD structure as follows:

// STD: STyle Definition

// The STD contains the entire definition of a style.

// It has two parts, a fixed-length base (cbSTDBase bytes long)

// and a variable length remainder holding the name, and the upx and upe

// arrays (a upx and upe for each type stored in the style, std.cupx)

// Note that new fields can be added to the BASE of the STD without

// invalidating the file format, because the STSHI contains the length

// that is stored in the file. When reading STDs from an older version,

// new fields will be zero.

typedef struct _STD

{

// Base part of STD:

ushort
sti : 12; /* invariant style identifier */

ushort
fScratch : 1; /* spare field for any temporary use,

 always reset back to zero! */

ushort
fInvalHeight : 1; /* PHEs of all text with this style are wrong */

ushort
fHasUpe : 1; /* UPEs have been generated */

ushort
fMassCopy : 1; /* std has been mass-copied; if unused at

 save time, style should be deleted */

ushort
sgc : 4; /* style type code */

ushort
istdBase : 12; /* base style */

ushort
cupx : 4; /* # of UPXs (and UPEs) */

ushort
istdNext : 12; /* next style */

ushort
bchUpe; /* offset to end of upx's, start of upe's */

// Variable length part of STD:

uchar
stzName[2]; /* sub-names are separated by chDelimStyle */

/* char
grupx[]; */

/* the UPEs are not stored on the file; they are a cache of the based-on

 chain */

/* char
grupe[]; */

} STD;

The cb preceding each STD is the length of the data, which includes all of the STD except the grupe array (which is derived after the file is read in, by building each UPE from the base style UPE plus the exceptions in the UPX.) A cb of zero indicates an empty slot in the style array, ie. no style has that istd. Note that the STD structure may be longer or shorter than the one stored in the file, stshi.cbSTDBaseInFile indicates the length of the base of the STD (up to stzName) as stored in the file. The stylesheet reader routine has to take this into account.

The variable-length part of the STD actually has three variable-length subparts, the stzName, the grupx, and the grupe. Since this doesn’t fit well into a C structure declaration, some processing is needed to figure out where one part stops and the next part begins. An important note is that all variable-length parts and subparts of the STD begin on EVEN-BYTE OFFSETS within the STD, even if the length of the preceding variable-length part was odd.

std.sti: The sti is an identifier which built-in style this is, or stiUser for a user-defined style. An sti is intended to be permanent through versions of Word, although new sti's may be added in new versions. The sti definitions are:

// standard sti codes - these are invariant identifiers for built-in styles

// and must remain the same (ie. don't renumber them, or old files will be

// messed up.)

// NOTE: sti and istd are the same for Normal and level styles

// If you want to define a new built-in style:

// 1) Decide if you really need one--it will exist in all future versions!

// 2) Add a new sti below. You can take the first available slot.

// 3) Change stiMax, and stiPapMax or stiChpMax

// 4) Add entry to _dnsti, and the two ids's in strman.pp

// 5) Add case in GetDefaultUpdForSti

// 6) Change cstiMaxBuiltinDependents if necessary

// If you want to change the definition of a built-in style

// 1) In order to make WinWord 2 documents that use the style look like

// they did in WinWord 2, add a case in GetDefaultUpdForSti to handle

// fOldDef. This definition will be used when converting WinWord 2

// stylesheets.

// 2) If you change the name of a built-in style, increment nVerBuiltInNames

#define stiNormal 0
// 0x0000

#define stiLev1 1
// 0x0001

#define stiLev2 2
// 0x0002

#define stiLev3 3
// 0x0003

#define stiLev4 4
// 0x0004

#define stiLev5 5
// 0x0005

#define stiLev6 6
// 0x0006

#define stiLev7 7
// 0x0007

#define stiLev8 8
// 0x0008

#define stiLev9 9
// 0x0009

#define stiLevFirst stiLev1

#define stiLevLast stiLev9

#define stiIndex1 10
// 0x000A

#define stiIndex2 11
// 0x000B

#define stiIndex3 12
// 0x000C

#define stiIndex4 13
// 0x000D

#define stiIndex5 14
// 0x000E

#define stiIndex6 15
// 0x000F

#define stiIndex7 16
// 0x0010

#define stiIndex8 17
// 0x0011

#define stiIndex9 18
// 0x0012

#define stiIndexFirst stiIndex1

#define stiIndexLast stiIndex9

#define stiToc1 19
// 0x0013

#define stiToc2 20
// 0x0014

#define stiToc3 21
// 0x0015

#define stiToc4 22
// 0x0016

#define stiToc5 23
// 0x0017

#define stiToc6 24
// 0x0018

#define stiToc7 25
// 0x0019

#define stiToc8 26
// 0x001A

#define stiToc9 27
// 0x001B

#define stiTocFirst stiToc1

#define stiTocLast stiToc9

#define stiNormIndent 28
// 0x001C

#define stiFtnText 29
// 0x001D

#define stiAtnText 30
// 0x001E

#define stiHeader 31
// 0x001F

#define stiFooter 32
// 0x0020

#define stiIndexHeading 33
// 0x0021

#define stiCaption 34
// 0x0022

#define stiToCaption 35
// 0x0023

#define stiEnvAddr 36
// 0x0024

#define stiEnvRet 37
// 0x0025

#define stiFtnRef 38
// 0x0026 char style

#define stiAtnRef 39
// 0x0027 char style

#define stiLnn 40
// 0x0028 char style

#define stiPgn 41
// 0x0029 char style

#define stiEdnRef 42
// 0x002A char style

#define stiEdnText 43
// 0x002B

#define stiToa 44
// 0x002C

#define stiMacro 45
// 0x002D

#define stiToaHeading 46
// 0x002E

#define stiList
 47
// 0x002F

#define stiListBullet 48
// 0x0030

#define stiListNumber 49
// 0x0031

#define stiList2
 50
// 0x0032

#define stiList3
 51
// 0x0033

#define stiList4
 52
// 0x0034

#define stiList5
 53
// 0x0035

#define stiListBullet2 54
// 0x0036

#define stiListBullet3 55
// 0x0037

#define stiListBullet4 56
// 0x0038

#define stiListBullet5 57
// 0x0039

#define stiListNumber2 58
// 0x003A

#define stiListNumber3 59
// 0x003B

#define stiListNumber4 60
// 0x003C

#define stiListNumber5 61
// 0x003D

#define stiTitle
 62
// 0x003E

#define stiClosing 63
// 0x003F

#define stiSignature 64
// 0x0040

#define stiNormalChar 65
// 0x0041 char style

#define stiBodyText 66
// 0x0042

#define stiBodyText2 67
// 0x0043

#define stiListCont 68
// 0x0044

#define stiListCont2 69
// 0x0045

#define stiListCont3 70
// 0x0046

#define stiListCont4 71
// 0x0047

#define stiListCont5 72
// 0x0048

#define stiMsgHeader 73
// 0x0049

#define stiSubtitle 74
// 0x004A

#define stiMax 75
// number of defined sti's

#define stiUser 0x0ffe
// user styles are distinguished by name

#define stiNil 0x0fff
// max for 12 bits

See below for the names of these styles.

std.stc: The type of each style is indicated by std.sgc. The two types currently in use are:

sgcPara
1
// A paragraph style

sgcChp
2
// A character style

More style types may exist in the future, so styles of an unknown type should be discarded.

std.istdBase: The style that this style is based on. A style is always based on another style or the null style (istdNil). Following a "chain" of based-on styles will always end at the null style, because a based-on chain cannot have a loop in it. A style can have up to 11 "ancestors" in its based-on chain, including the null style. A style's definition is built up from the style that it is based on. See std.cupx, std.grupx, std.grupe.

std.istdNext: The style that should be applied after this one. For a paragraph style, this is the style that is applied when Enter is pressed at the end of a paragraph. For a character style, the next style is essentially ignored, but should be the same as the current style.

std.stzName: The name of the style, including aliases. The name is stored as an stz (preceded by a length byte, followed by a null-terminator.) A style name can contain multiple "aliases", separated by commas. Aliases are alternate names for the same style (eg. a style named "a,b,c" has three aliases, and can be referred to by "a", "b", or "c", or any combination.) WinWord 2.x did not have aliases, but MacWord 5.x did. If a style is a built-in style, the built-in stylename is always stored first.

All names (and aliases) must be unique within a stylesheet (eg. styles "a,b" and "b,c" should not exist in the same stylesheet, as "b" matches multiple stylenames.)

A stylename (including all its aliases and comma separators) can be up to 253 characters long. So the stz format of that name can be up to 255 characters.

The built-in stylenames (corresponding to each sti above) are defined for each language version of Word. For the USA, the names are:

// These are the names of the built-in styles as we want to present them

// to the user.

Normal

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5

Heading 6

Heading 7

Heading 8

Heading 9

Index 1

Index 2

Index 3

Index 4

Index 5

Index 6

Index 7

Index 8

Index 9

TOC 1

TOC 2

TOC 3

TOC 4

TOC 5

TOC 6

TOC 7

TOC 8

TOC 9

Normal Indent

Footnote Text

Annotation Text

Header

Footer

Index Heading

Caption

Table of Figures

Envelope Address

Envelope Return

Footnote Reference

Annotation Reference

Line Number

Page Number

Endnote Reference

Endnote Text

Table of Authorities

Macro Text

TOA Heading

List

List 2

List 3

List 4

List 5

List Bullet

List Bullet 2

List Bullet 3

List Bullet 4

List Bullet 5

List Number

List Number 2

List Number 3

List Number 4

List Number 5

Title

Closing

Signature

Default Paragraph Font

Body Text

Body Text Indent

List Continue

List Continue 2

List Continue 3

List Continue 4

List Continue 5

Message Header

Subtitle

std.cupx: This is the number of UPXs in the std.grupx array. See below.

std.grupx: This is an array
 of variable-length UPXs, with std.cupx UPXs in the array. This array begins after the variable-length stzName field, at the next even-byte offset within the STD. A UPX (Universal Property eXception) describes the difference in formatting of this style as compared to its based-on style. The UPX structure looks like this:

typedef union _UPX

{

struct

{

uchar grpprl[cbMaxGrpprlStyleChpx];

} chpx;

struct

{

ushort istd;

uchar grpprl[cbMaxGrpprlStylePapx];

} papx;

uchar rgb[1];

} UPX;

Each UPX stored in a file is not a complete UPX, rather it is a UPX with all trailing zero bytes lopped off, and preceded by a ushort length field. So it is stored like:

Field
Size
Comment

cbUPX
2 bytes
size of the following UPX structure

UPX
(cbUPX)
Nonzero prefix of a UPX structure

Each UPX begins on an even-byte offset within the STD, even if the length of the previous UPX (cbUPX) was odd.

The meaning of each UPX depends on the style type (std.sgc). For a paragraph style, std.cupx is 2. The first UPX is a paragraph UPX (UPX.papx) and the second UPX is a character UPX (UPX.chpx). For a character style, std.cupx is 1, and that UPX is a character UPX (UPX.chpx). Note that new UPXs may be added in the future, so std.cupx might be larger than expected. Any UPXs past those expected should be discarded.

The grpprl within each UPX contains the differences of this property type for this style from the UPE of that property type for the based on style. For example, if two paragraph styles, A and B, were identical except that B was bold where A was not, and B was based on A, B would have two UPXs, where the paragraph UPX would have an empty grpprl
, and the character UPX would have a bold sprm in the grpprl. Thus B looks just like A (since B is based on A), with the exception that B is bold.

std.grupe: This is an array (group) of variable-length UPEs. These are not stored in the file! Rather, they are constructed using the std.istdBase and std.grupx fields. A UPE (Universal Property Expansion) describes the ”end-result” of the property formatting, ie. what the style looks like. The UPE structure is the non-zero prefix of a UPD structure. The UPD structure looks like this:

typedef union _UPD

{

PAP pap;

CHP chp;

struct

{

ushort istd;

uchar cbGrpprl;

uchar grpprl[cbMaxGrpprlStyleChpx];

} chpx;

} UPD;

The std.grupe and std.grupx arrays are similar: there is one UPE for each UPX, and internally they are stored similarly (a length ushort followed by a non-zero prefix), though remember that the UPEs are not stored in the file. The meaning of each UPE depends on the style type (std.sgc). For a paragraph style, the first UPE is a PAP (UPE.pap). The second UPE is a CHP (UPE.chp). For a character style, the first UPE is a CHPX (UPE.chpx).

The UPEs for a style are constructed by taking the UPEs from the based-on style, and applying the UPXs to them. Obviously, if the UPEs for the based-on style haven’t yet been constructed, that style’s UPE needs to be constructed first. Eventually by following the based-on chain, a style will be based on the null style (istdNil). The UPEs for the null style are predefined:

The UPE.pap for the null style is all zeros, except fWidowControl which is 1, dyaLine which is 240, and fMultLinespace which is 1.

The UPE.chp for the null style is all zeros, except istd which is 10 (istdNormalChar), hps which is 20, lid which is 0x0400, and ftc which is set to the STSHI.ftcStandardChpStsh.

The UPE.chpx for the null style has an istd of zero, a cbGrpprl of zero (and an empty grpprl).

So, for a paragraph style, the first UPE is a UPE.pap. It can be constructed by starting the with first UPE from the based-on style (std.istdBase), and then applying the first UPX (UPX.papx) in std.grupx to that UPE. To apply a UPX.papx to a UPE.pap, set UPE.pap.istd equal to UPX.papx.istd, and then apply the UPX.papx.grpprl to UPE.pap. Similarly, the second UPE is a UPE.chp. It can be constructed by starting with the second UPE from the based-on style, and then applying the second UPX (UPX.chpx) in std.grupx to that UPE. To apply a UPX.chpx to a UPE.chp, apply the UPX.chpx.grpprl to UPE.chp. Note that a UPE.chp for a paragraph style should always have UPE.chp.istd == istdNormalChar.

For a character style, the first (and only) UPE (a UPE.chpx) can be constructed by starting with the first UPE from the based-on style (std.istdBase), and then applying the first UPX (UPX.chpx) in std.grupx to that UPE. To apply a UPX.chpx to a UPE.chpx, take the grpprl in UPE.chpx.grpprl (which has a length of UPE.chpx.cbGrpprl) and merge the grpprl in UPX.chpx.grpprl into it. Merging grpprls is a tricky business, but for character styles it is easy because no prls in character style grpprls should interact with each other. Each prl from the source (the UPX.chpx.grpprl) should be inserted into the destination (the UPE.chpx.grpprl) so that the sprm of each prl is in increasing order, and any prls that have the same sprm are replaced by the prl in the source. UPE.chpx.cbGrpprl is then set to the length of resulting grpprl, and UPE.chpx.istd is set to the style’s istd.

SPRM DEFINITIONS

A sprm is an instruction to modify one or more properties within one of the property defining data structures (CHP, PAP, TAP, SEP, or PIC). A sprm always begins with a one byte opcode at offset 0 which identifies the operation to be performed. If necessary information for the operation can always be expressed with a fixed length parameter, the fixed length parameter is recorded immediately after the opcode beginning at offset 1. The length of a fixed length sprm is always 1 plus the size of the sprm’s parameter. If the parameter for the sprm is variable length, the count of bytes of the following parameter is stored in the byte at offset 1.

Three sprms, sprmPChgTabs , sprmTDefTable, and sprmTDefTable10 can be longer than 256 bytes. The method for calculating the length of sprmPChgTabs is recorded below with the description of the sprm.For sprmTDefTable and sprmTDefTable10, the length of the parameter plus 1 is recorded in the two bytes beginning at offset 1.

 For variable length sprms, the total length of the sprm is the count recorded at offset 1 plus two. The parameter immediately follows the count.

Unless otherwise noted, when a sprm is applied to a property the sprm's parameter changes the old value of the property in question to the value stored in the sprm parameter.

Name
op code
Property Modified
Parameter
Parameter size

sprmPIstd
2
pap.istd
istd (style code)
short

sprmPIstdPermute
3
pap.istd
permutation vector (see below)
variable length

sprmPIncLv1
4
pap.istd
difference between istd of base PAP and istd of PAP to be produced (see below)
byte

sprmPJc
5
pap.jc
jc (justification)
byte

sprmPFSideBySide
6
pap.fSideBySide
0 or 1
byte

sprmPFKeep
7
pap.fKeep
0 or 1
byte

sprmPFKeepFollow
8
pap.fKeepFollow
0 or 1
byte

sprmPPageBreakBefore
9
pap.fPageBreakBefore
0 or 1
byte

sprmPBrcl
10
pap.brcl
brcl
byte

sprmPBrcp
11
pap.brcp
brcp
byte

sprmPAnldxe "sprmPAnld"
12
pap.anld
anld
variable length (the length of an ANLD structure)

sprmPNLvlAnmxe "sprmPNLvlAnm"
13
pap.nLvlAnm
nn
byte

sprmPFNoLineNumb
14
pap.fNoLnn
0 or 1
byte

sprmPChgTabsPapx
15
pap.itbdMac, pap.rgdxaTab, pap.rgtbd
complex - see below
variable length

sprmPDxaRight
16
pap.dxaRight
dxa
word

sprmPDxaLeft
17
pap.dxaLeft
dxa
word

sprmPNest
18
pap.dxaLeft
dxa-see below
word

sprmPDxaLeft1
19
pap.dxaLeft1
dxa
word

sprmPDyaLine
20
pap.lspd
an LSPD, a long word structure consisting of a short of dyaLine followed by a short of fMultLinespace - see below
long

sprmPDyaBefore
21
pap.dyaBefore
dya
word

sprmPDyaAfter
22
pap.dyaAfter
dya
word

sprmPChgTabs
23
pap.itbdMac, pap.rgdxaTab, pap.rgtbd
complex - see below
variable length

sprmPFInTable
24
pap.fInTable
0 or 1
byte

sprmPTtp
25
pap.fTtp
0 or 1
byte

sprmPDxaAbs
26
pap.dxaAbs
dxa
word

sprmPDyaAbs
27
pap.dyaAbs
dya
word

sprmPDxaWidth
28
pap.dxaWidth
dxa
word

sprmPPc
29
pap.pcHorz, pap.pcVert
complex - see below
byte

sprmPBrcTop10
30
pap.brcTop
BRC10
word

sprmPBrcLeft10
31
pap.brcLeft
BRC10
word

sprmPBrcBottom10
32
pap.brcBottom
BRC10
word

sprmPBrcRight10
33
pap.brcRight
BRC10
word

sprmPBrcBetween10
34
pap.brcBetween
BRC10
word

sprmPBrcBar10
35
pap.brcBar
BRC10
word

sprmPFromText10
36
pap.dxaFromText
dxa
word

sprmPWr
37
pap.wr
wr (see description of PAP for definition
byte

sprmPBrcxe "sprmPBrc"Top
38
pap.brcTop
BRC
word

sprmPBrcLeft
39
pap.brcLeft
BRC
word

sprmPBrcBottom
40
pap.brcBottom
BRC
word

sprmPBrcRight
41
pap.brcRight
BRC
word

sprmPBrcBetween
42
pap.brcBetween
BRC
word

sprmPBrcBar
43
pap.brcBar
BRC
word

sprmPFNoAutoHyph
44
pap.fNoAutoHyph
0 or 1
byte

sprmPWHeightAbsxe "sprmPWHeightAbs"
45
pap.wHeightAbs
w
word

sprmPDcs
46
pap.dcs
DCS
short

sprmPShdxe "sprmPShd"
47
pap.shd
SHD
word

sprmPDyaFromTextxe "sprmPDyaFromText"
48
pap.dyaFromText
dya
word

sprmPDxaFromTextxe "sprmPDxaFromText"
49
pap.dxaFromText
dxa
word

sprmPFLocked
50
pap.fLocked
0 or 1
byte

sprmPFWidowControl
51
pap.fWidowControl
0 or 1
byte

sprmPRulerxe "sprmPRuler"
52

sprmCFStrikeRMxe "sprmCFStrikeRM"
65
chp.fRMarkDel
1 or 0
bit

sprmCFRMarkxe "sprmCFRMark"
66
chp.fRMark
1 or 0
bit

sprmCFFldVanishxe "sprmCFFldVanish"
67
chp.fFldVanish
1 or 0
bit

sprmCPicLocation
68
chp.fcPic and chp.fSpec
see below
variable length, length recorded is always 4

sprmCIbstRMark
69
chp.ibstRMark
index into sttbRMark
short

sprmCDttmRMark
70
chp.dttm
DTTM
long

sprmCFData
71
chp.fData
1 or 0
bit

sprmCRMReason
72
chp.idslRMReason
an index to a table of strings defined in Word 6.0 executables
short

sprmCChse
73
chp.fChsDiff and chp.chse
see below
3 bytes

sprmCSymbol
74
chp.fSpec, chp.chSym and chp.ftcSym
see below
variable length, length recorded is always 3

sprmCFOle2
75
chp.fOle2
1 or 0
bit

sprmCIstd
80
chp.istd
istd, see stylesheet definition
short

sprmCIstdPermute
81
chp.istd
permutation vector (see below)
variable length

sprmCDefault
82
whole CHP (see below)
none
variable length

sprmCPlain
83
whole CHP (see below)
none
0

sprmCFBold
85
chp.fBold
0,1, 128, or 129 (see below)
byte

sprmCFItalic
86
chp.fItalic
0,1, 128, or 129 (see below)
byte

sprmCFStrike
87
chp.fStrike
0,1, 128, or 129 (see below)
byte

sprmCFOutline
88
chp.fOutline
0,1, 128, or 129 (see below)
byte

sprmCFShadow
89
chp.fShadow
0,1, 128, or 129 (see below)
byte

sprmCFSmallCaps
90
chp.fSmallCaps
0,1, 128, or 129 (see below)
byte

sprmCFCaps
91
chp.fCaps
0,1, 128, or 129 (see below)
byte

sprmCFVanish
92
chp.fVanish
0,1, 128, or 129 (see below)
byte

sprmCFtc
93
chp.ftc
ftc
word

sprmCKul
94
chp.kul
kul
byte

sprmCSizePos
95
chp.hps, chp.hpsPos
(see below)
3 bytes

sprmCDxaSpace
96
chp.dxaSpace
dxa
word

sprmCLidxe "sprmCLid"
97
chp.lid
LID
word

sprmCIco
98
chp.ico
ico
byte

sprmCHps
99
chp.hps
hps
byte

sprmCHpsInc
100
chp.hps
(see below)
byte

sprmCHpsPos
101
chp.hpsPos
hps
byte

sprmCHpsPosAdj
102
chp.hpsPos
hps (see below)
byte

sprmCMajority
103
chp.fBold, chp.fItalic, chp.fSmallCaps, chp.fVanish, chp.fStrike, chp.fCaps, chp.ftc, chp.hps, chp.hpsPos, chp.kul, chp.dxaSpace, chp.ico, chp.lid
complex (see below)
variable length,length byte plus size of following grpprl

sprmCIss
104
chp.iss
iss
byte

sprmCHpsNew50
105
chp.hps
hps
variable width, length always recorded as 2

sprmCHpsInc1
106
chp.hps
complex (see below)
variable width, length always recorded as 2

sprmCHpsKern
107
chp.hpsKern
hps
short

sprmCMajority50
108
chp.fBold, chp.fItalic, chp.fSmallCaps, chp.fVanish, chp.fStrike, chp.fCaps, chp.ftc, chp.hps, chp.hpsPos, chp.kul, chp.dxaSpace, chp.ico,
complex (see below)
variable length

sprmCHpsMul
109
chp.hps
percentage to grow hps
short

sprmCCondHyhen
110
chp.ysri
ysri
short

sprmCFSpec
117
chp.fSpec
1 or 0
bit

sprmCFObj
118
chp.fObj
1 or 0
bit

sprmPicBrcl
119
pic.brcl
brcl (see PIC structure definition)
byte

sprmPicScale
120
pic.mx, pic.my, pic.dxaCropleft,

pic.dyaCropTop

pic.dxaCropRight,

pic.dyaCropBottom
complex (see below)
length byte plus 12 bytes

sprmPicBrcxe "sprmPicBrc"Top
121
pic.brcTop
BRC
word

sprmPicBrcLeft
122
pic.brcLeft
BRC
word

sprmPicBrcBottom
123
pic.brcBottom
BRC
word

sprmPicBrcRight
124
pic.brcRight
BRC
word

sprmSScnsPgn
131
sep.cnsPgn
cns
byte

sprmSiHeadingPgn
132
sep.iHeadingPgn
heading number level
byte

sprmSOlstAnm
133
sep.olstAnm
OLST
variable length

sprmSDxaColWidth
136
sep.rgdxaColWidthSpacing
complex (see below)
3 bytes

sprmSDxaColSpacing
137
sep.rgdxaColWidthSpacing
complex (see below)
3 bytes

sprmSFEvenlySpaced
138
sep.fEvenlySpaced
1 or 0
byte

sprmSFProtected
139
sep.fUnlocked
1 or 0
byte

sprmSDmBinFirstxe "sprmSDmBinFirst"
140
sep.dmBinFirst

word

sprmSDmBinOtherxe "sprmSDmBinOther"
141
sep.dmBinOther

word

sprmSBkc
142
sep.bkc
bkc
byte

sprmSFTitlePage
143
sep.fTitlePage
0 or 1
byte

sprmSCcolumns
144
sep.ccolM1
of cols - 1
word

sprmSDxaColumns
145
sep.dxaColumns
dxa
word

sprmSFAutoPgnxe "sprmSFAutoPgn"
146
sep.fAutoPgn
obsolete
byte

sprmSNfcPgn
147
sep.nfcPgn
nfc
byte

sprmSDyaPgnxe "sprmSDyaPgn"
148
sep.dyaPgn
dya
short

sprmSDxaPgnxe "sprmSDxaPgn"
149
sep.dxaPgn
dya
short

sprmSFPgnRestart
150
sep.fPgnRestart
0 or 1
byte

sprmSFEndnote
151
sep.fEndnote
0 or 1
byte

sprmSLnc
152
sep.lnc
lnc
byte

sprmSGprfIhdt
153
sep.grpfIhdt
grpfihdt (see Headers and Footers topic)
byte

sprmSNLnnMod
154
sep.nLnnMod
non-neg int.
word

sprmSDxaLnn
155
sep.dxaLnn
dxa
word

sprmSDyaHdrTop
156
sep.dyaHdrTop
dya
word

sprmSDyaHdrBottom
157
sep.dyaHdrBottom
dya
word

sprmSLBetween
158
sep.fLBetween
0 or 1
byte

sprmSVjc
159
sep.vjc
vjc
byte

sprmSLnnMin
160
sep.lnnMin
lnn
word

sprmSPgnStart
161
sep.pgnStart
pgn
word

sprmSBOrientationxe "sprmSBOrientation"
162
sep.dmOrientPage
dm
byte

sprmSBCustomizexe "sprmSBCustomize"
163

sprmSXaPagexe "sprmSXaPage"
164
sep.xaPage
xa
word

sprmSYaPagexe "sprmSYaPage"
165
sep.yaPage
ya
word

sprmSDxaLeftxe "sprmSDxaLeft"
166
sep.dxaLeft
dxa
word

sprmSDxaRightxe "sprmSDxaRight"
167
sep.dxaRight
dxa
word

sprmSDyaTopxe "sprmSDyaTop"
168
sep.dyaTop
dya
word

sprmSDyaBottomxe "sprmSDyaBottom"
169
sep.dyaBottom
dya
word

sprmSDzaGutterxe "sprmSDzaGutter"
170
sep.dzaGutter
dza
word

sprmSDMPaperReq
171
sep.dmPaperReq
dm
word

sprmTJc
182
tap.jc
jc
word (low order byte is significant)

sprmTDxaLeft
183
tap.rgdxaCenter (see below)
dxa
word

sprmTDxaGapHalf
184
tap.dxaGapHalf, tap.rgdxaCenter (see below)
dxa
word

sprmTFCantSplit
185
tap.fCantSplit
1 or 0
byte

sprmTTableHeader
186
tap.fTableHeader
1 or 0
byte

sprmTTableBorders
187
tap.rgbrcTable
complex(see below)
12 bytes

sprmTDefTable10
188
tap.rgdxaCenter, tap.rgtc
complex (see below)
variable length

sprmTDyaRowHeight
189
tap.dyaRowHeight
dya
word

sprmTDefTablexe "sprmTDefTable"
190
tap.rgtc
complex (see below)

sprmTDefTableShdxe "sprmTDefTableShd"
191
tap.rgshd
complex (see below)

sprmTTlp
192
tap.tlp
TLP
4 bytes

sprmTSetBrcxe "sprmTSetBrc"
193
tap.rgtc[].rgbrc
complex (see below)
5 bytes

sprmTInsert
194
tap.rgdxaCenter,tap.rgtc
complex (see below)
4 bytes

sprmTDelete
195
tap.rgdxaCenter, tap.rgtc
complex (see below)
word

sprmTDxaCol
196
tap.rgdxaCenter
complex (see below)
4 bytes

sprmTMerge
197
tap.fFirstMerged, tap.fMerged
complex (see below)
word

sprmTSplit
198
tap.fFirstMerged, tap.fMerged
complex (see below)
word

sprmTSetBrc10
199
tap.rgtc[].rgbrc
complex (see below)
5 bytes

sprmTSetShdxe "sprmTSetShd"
200
tap.rgshd
complex (see below)
4 bytes

sprmMaxxe "sprmMax"
208

The paragraph sprms used to encode paragraph properties in a PAPX are: sprmPJc, sprmPFSideBySide, sprmPFKeep, sprmPFKeepFollow, sprmPFPageBreakBefore, sprmPBrcp, sprmPPc, sprmPBrcl, sprmPNLvelAnm, sprmPFNoLineNumb, sprmPFSideBySide, sprmPDxaRight, sprmPDxaLeft., sprmPDxaLeft1, sprmPDyaLine, sprmPDyaBefore, sprmPDyaAfter, sprmPFNoAutoHyph, sprmPFInTable, sprmPFTtp, sprmPDxaAbs, sprmPDyaAbs, sprmPDxaWidth, sprmPBrcTop, sprmPBrcLeft, sprmPBrcBottom, sprmPBrcRight, sprmPBrcBetween, sprmPBrcBar, sprmPDxaFromText, sprmPDyaFromText, sprmPWr, sprmPWHeightAbs, sprmPShd, sprmPDcs, sprmPAnld and sprmPChgTabsPapx.

The table sprms used to encode table properties in a PAPX stored in a PAPX FKP are: sprmTJc, sprmTDxaGapHalf, sprmTDyaRowHeight, sprmTDefTableShdxe "sprmTDefTableShd", and sprmTDefTable.

The section sprms used to encode section properties in a SEPX are:
sprmSBkc, sprmSFTitlePage, sprmSCcolumns, sprmSNfcPgn, sprmSPgnStart, sprmSFAutoPgn, sprmSDyaPgn, sprmSDxaPgn, sprmSFPgnRestart, sprmSFEndnote, sprmSLnc, sprmSGrpfIhdt, sprmSNLnnMod, sprmSDxaLnn, sprmSDyaHdrTop, sprmSDyaHdrBottom.

sprmPIstdPermute (opcode 3) is a complex sprm which is applied to a piece when the style codes of paragraphs within a piece must be mapped to other style codes. It has the following format:

Field
Size
Comment

sprm
byte
opcode(==3)

cch
byte
count of bytes (not including sprm and cch)

fLongg
byte
always 0

fSpare
byte
always 0

istdFirst
unsigned short
index of first style in range to which permutation stored in rgistd applies

istdLast
unsigned short
index of last style in range to which permutation stored in rgistd applies

rgistd[]
unsigned short
array of istd entries that records the mapping of istds for text copied from a source document to istds that exists in the destination document after the text has been pasted

To interpret sprmPIstdPermute, first check if pap.istd is greater than the istdFirst recorded in the sprm and less than or equal to the istdLast recorded in the sprm If not, the sprm has no effect. If it is, pap.istd is set to rgistd[pap.istd - istdFirst]. sprmPIstdPermute is only stored in grpprls linked to a piece table. It should never be recorded in a PAPX.

sprmPIncLvl (opcode 4) is applied to pieces in the piece table that contain paragraphs with style codes
(istds) greater than or equal to1 and less than or equal to9. These style codes identify heading levels in a Word outline structure. The sprm causes a set of paragraphs to be changed to a new heading level. The sprm is two bytes long and consists of the sprm code and a one byte two’s complement value.

If pap.stc is < 1 or > 9, sprmPIncLvl has no effect. Otherwise, if the value stored in the byte has its highest order bit off, the value is a positive difference which should be added to from pap.istd and then pap.stc should be set to min(pap.istd, 9). If the byte value has its highest order bit on, the value is a negative difference which should be sign extended to a word and then subtracted from pap.istd. Then pap.stc should be set to max(1, pap.istd). sprmPIncLvl is only stored in grpprls linked to a piece table.

The sprmPAnld (opcode 12) sets the pap.anld which is a data structure which describes what Word will display as an automatically generated sequence number at the beginning of an autonumbered paragraph. See the description of the ANLD in the data structure descriptions.

The sprmPChgTabsPapx (opcode 15) is a complex sprm that describes changes in tab settings from the underlying style. It is only stored as part of PAPXs stored in FKPs and in the STSH. It has the following format:

Field
Size
Comment

sprm
byte
opcode

cch
byte
count of bytes (not including sprm and cch)

itbdDelMax
byte
number of tabs to delete

rgdxaDel
int[itbdDelMax]
array of tab positions for which tabs should be deleted

itbdAddMax
byte
number of tabs to add

rgdxaAdd
int[itbdAddMax]
array of tab positions for which tabs should be added

rgtbdAdd
byte[itbdAddMax]
array of tab descriptors corresponding to rgdxaAdd

When sprmPChgTabsPapx is interpreted, the rgdxaDel of the sprm is applied first to the pap that is being transformed. This is done by deleting from the pap the rgdxaTab entry and rgtbd entry of any tab whose rgdxaTab value is equal to one of the rgdxaDel values in the sprm. It is guaranteed that the entries in pap.rgdxaTab and the sprm’s rgdxaDel and rgdxaAdd are recorded in ascending dxa order.

Then the rgdxaAdd and rgtbdAdd entries are merged into the pap’s rgdxaTab and rgtbd arrays so that the resulting pap rgdxaTab is sorted in ascending order with no duplicates.

sprmPNest (opcode 18) causes its operand, a two-byte dxa value to be added to pap.dxaLeft. If the result of the addition is less than 0, 0 is stored into pap.dxaLeft. It is used to shift the left indent of a paragraph to the right or left. sprmPNest is only stored in grpprls linked to a piece table.

sprmPDyaLine (opcode 20) moves a 4 byte LSPD structure into pap.lspd. Two short fields are stored in this data structure. The first short in the structure is named lspd.dyaLine and the second is named lspd.fMultLinespace. When lspd.fMultLinespace is 0, the magnitude of lspd.dyaLine specifies the amount of space that will be provided for lines in the paragraph in twips. When lspd.dyaLine is positive, Word will ensure that AT LEAST the magnitude of lspd.dyaLine will be reserved on the page for each line displayed in the paragraph. If the height of a line becomes greater than lspd.dyaLine, the size calculated for that line will be reserved on the page. When lspd.dyaLine is negative, Word will ensure that EXACTLY the magnitude of lspd.dyaLine (-lspd.dyaLine) will be reserved on the page for each line displayed in the paragraph. When lspd.fMultLinespace is 1, Word will reserve for each line the (maximal height of the line*lspd.dyaLine)/240.

The sprmPChgTabs (opcode 23) is a complex sprm which describes changes tab settings for any paragraph within a piece. It is only stored as part of a grpprl linked to a piece table. It has the following format:

Field
Size
Comment

sprm
byte
opcode

cch
byte
count of bytes (not including sprm and cch)

itbdDelMax
byte
number of tabs to delete

rgdxaDel
int[itbdDelMax]
array of tab positions for which tabs should be deleted

rgdxaClose
int[itbdDelMax]
array of tolerances corresponding to rgdxaDel where each tolerance defines an interval around corresponding rgdxaDel entry within which all tabs should be removed

itbdAddMax
byte
number of tabs to add

rgdxaAdd
int[itbdAddMax]
array of tab positions for which tabs should be added

rgtbdAdd
byte[itbdAddMax]
array of tab descriptors corresponding to rgdxaAdd

itbdDelMax and itbdAddMax are defined to be equal to 50. This means that the largest possible instance of sprmPChgTabs is 354. When the length of the sprm is greater than or equal to 255, the cch field will be set equal to 255. When cch == 255, the actual length of the sprm can be calculated as follows: length = 2 + itbdDelMax * 4 + itbdAddMax * 3.

When sprmPChgTabs is interpreted, the rgdxaDel of the sprm is applied first to the pap that is being transformed. This is done by deleting from the pap the rgdxaTab entry and rgtbd entry of any tab whose rgdxaTab value is within the interval [rgdxaDel[i] - rgdxaClose[i], rgdxaDel[i] + rgdxaClose[i]] It is guaranteed that the entries in pap.rgdxaTab and the sprm’s rgdxaDel and rgdxaAdd are recorded in ascending dxa order.

Then the rgdxaAdd and rgtbdAdd entries are merged into the pap’s rgdxaTab and rgtbd arrays so that the resulting pap rgdxaTab is sorted in ascending order with no duplicates.

The sprmPPc (opcode 29) is a complex sprm which describes changes in the pap.pcHorz and pap.pcVert. It is able to change both fields’ contents in parallel. It has the following format:

b10
b16
field
type
size
bitfield
comments

0
0
sprm
byte

opcode

1
1

int
:4
F0

reserved

pcVert
int
:2
0C
if pcVert ==3, pap.pcVert should not be changed. Otherwise, contains new value of pap.pcVert.

pcHorz
int
:2
03
if pcHorz==3, pap.pcHorz should not be changed. Otherwise, contains new value of pap.pcHorz.

Length of sprmPPc is two bytes.

sprmPPc is interpreted by moving pcVert to pap.pcVert if pcVert != 3 and by moving pcHorz to pap.pcHorz if pcHorz != 3. sprmPPc is stored in PAPX FKPs and also in grpprls linked to piece table entries.

sprmCPicLocation (opcode 68) is used ONLY IN CHPX FKPs. This sprm moves the 4 bytes of data stored at offset 2 in the sprm into the chp.fcPic field. It simultaneously sets chp.fSpec to 1. This sprm is also when the chp.lTagObj field that is unioned with chp.fcPic is to be set for OLE objects.

sprmCChse (opcode 73) is used to record a character set id for text that was pasted into the Word document that used a character set different than Word’s default character set. When chp.fChsDiff is 0, the character set used for a run of text is the default character set for the version of Word that last saved the document. When chp.fChsDiff is 1, chp.chse specifies the character set used for this run of text. When this sprm is interpreted, the byte at offset 1 in the sprm is moved to chp.fChsDiff and the word stored at offset 2 is moved to chp.chse.

sprmCSymbol (opcode 74) is used to specify the font and the character that will be used within that font to display a symbol character in Word. The length byte recorded at offset 1 in this sprm will always be 3. When this sprm is interpreted the two byte font code recorded at offset 2 is moved to chp.ftcSym, the single byte character specifier recorded at offset 4 is moved to chp.chSym and chp.fSpec is set to 1.

sprmCIstdPermute (opcode 81) (which has the same format as sprmPIstdPermute (opcode 3)). is a complex sprm which is applied to a piece when the style codes for character styles tagging character runs within a piece must be mapped to other style codes. It has the following format:

Field
Size
Comment

sprm
byte
opcode(==81)

cch
byte
count of bytes (not including sprm and cch)

fLongg
byte
always 0

fSpare
byte
always 0

istdFirst
unsigned short
index of first style in range to which permutation stored in rgistd applies

istdLast
unsigned short
index of last style in range to which permutation stored in rgistd applies

rgistd[]
unsigned short
array of istd entries that records the mapping of istds for text copied from a source document to istds that exists in the destination document after the text has been pasted

To interpret sprmCIstdPermute, first check if chp.istd is greater than the istdFirst recorded in the sprm and less than or equal to the istdLast recorded in the sprm If not, the sprm has no effect. If it is, chp.istd is set to rgstd[chp.istd - istdFirst] and any chpx stored in that rgstd entry is applied to the chp. sprmCIstdPermute is only stored in grpprls linked to a piece table. It should never be recorded in a CHPX.

Note that it is possible that an istd may be recorded in the rgistd that refers to a paragraph style. This will no harmful consequences since the istd for a paragraph style should never be recorded in chp.istd.

sprmCDefault (opcode 82) clears the fBold, fItalic, fOutline,fStrike, fShadow, fSmallCaps, fCaps, fVanish, kul and ico fields of the chp to 0. It was first defined for Word 3.01 and had to be backward compatible with Word 3.00 so it is a variable length sprm whose count of bytes is 0. It consists of the sprmCDefault opcode followed by a byte of 0. sprmCDefault is stored only in grpprls linked to piece table entries.

sprmCPlain (opcode 83) is used to make the character properties of runs of text equal to the style character properties of the paragraph that contains the text. When Word interprets this sprm, the style sheet CHP is copied over the original CHP preserving the fSpec setting from the original CHP. sprmCPlain is stored only in grpprls linked to piece table entries.

sprms 85 through 92 (sprmCFBold through sprmCFVanish) set single bit properties in the CHP. When the parameter of the sprm is set to 0 or 1, then the CHP property is set to the parameter value.

When the parameter of the sprm is 128, then the CHP property is set to the value that is stored for the property in the style sheet. CHP When the parameter of the sprm is 129, the CHP property is set to the negation of the value that is stored for the property in the style sheet CHP. sprmCFBold through sprmCFVanish are stored only in grpprls linked to piece table entries.

sprmCSizePos (opcode 95) is a four byte sprm consisting of the sprm opcode and a three byte parameter. The sprm has the following format:

b10
b16
field
type
size
bitfield
comments

0
0
sprm
byte

opcode

1
1
hpsSize
int
:8
FF
when != 0, contains new size of chp.hps

2
2
cInc
int
:7
FE
contains the number of font levels to increase or decrease size of chp.hps as a twos complement value.

fAdjust
int
:1
01
when == 1, means that chp.hps should be adjusted up/down by one font level for super/subscripting change

3
3
hpsPos
int
:8
FF
when != 128, contains super/subscript position as a twos complement number

When Word interprets this sprm, if hpsSize != 0 then chp.hps is set to hpsSize. If cInc is != 0, the cInc is interpreted as a 7 bit twos complement number and the procedure described below for interpreting sprmCHpsInc is followed to increase or decrease the chp.hps by the specified number of levels. If hpsPos is != 128, then chp.hpsPos is set equal to hpsPos. If fAdjust is on , hpsPos != 128 and hpsPos != 0 and the previous value of chp.hpsPos == 0, then chp.hps is reduced by one level following the method described for sprmCHpsInc. If fAdjust is on, hpsPos == 0 and the previous value of chp.hpsPos != 0, then the chp.hps value is increased by one level using the method described below for sprmCHpsInc.

sprmCHpsInc(opcode 100) is a two-byte sprm consisting of the sprm opcode and a one-byte parameter. Word keeps an ordered array of the font sizes that are defined for the fonts recorded in the system file with each font size transformed into an hps. The parameter is a one-byte twos complement number. Word uses this number to calculate an index in the font size array to determine the new hps for a run. When Word interprets this sprm and the parameter is positive, it searches the array of font sizes to find the index of the smallest entry in the font size table that is greater than the current chp.hps.It then adds the parameter minus 1 to the index and maxes this with the index of the last array entry. It uses the result as an index into the font size array and assigns that entry of the array to chp.hps.

When the parameter is negative, Word searches the array of font sizes to find the index of the entry that is less than or equal to the current chp.hps. It then adds the negative parameter to the index and does a min of the result with 0. The result of the min function is used as an index into the font size array and that entry of the array is assigned to chp.hps. sprmCHpsInc is stored only in grpprls linked to piece table entries.

sprmCHpsPosAdj (opcode 102) causes the hps of a run to be reduced the first time time text is superscripted or subscripted and causes the hps of a run to be increased when superscripting/subscripting is removed from a run. The one byte parameter of this sprm is the new hpsPos value that is to be stored in chp.hpsPos. If the new hpsPos is not equal 0 (meaning that the text is to be super/subscripted), Word first examines the current value of chp.hpsPos to see if it is equal to 0. If so, Word uses the algorithm described for sprmCHpsInc to decrease chp.hps by one level. If the new hpsPos == 0 (meaning the text is not super/subscripted), Word examines the current chp.hpsPos to see if it is not equal to 0. If it is not (which means text is being restored to normal position), Word uses the sprmCHpsInc algorithm to increase chp.hps by one level. After chp.hps is adjusted, the parameter value is stored in chp.hpsPos. sprmCHpsPosAdj is stored only in grpprls linked to piece table entries.

The parameter of sprmCMajority (opcode 103) is itself a list of character sprms which encodes a criterion under which certain fields of the chp are to be set equal to the values stored in a style’s CHP. Byte 0 of sprmCMajority contains the opcode, byte 1 contains the length of the following list of character sprms. . Word begins interpretation of this sprm by applying the stored character sprm list to a standard chp. That chp has chp.istd = istdNormalChar. chp.hps=20, chp.lid=0x0400and chp.ftc = 4. Wordthen comparesfBold, fItalic, fStrike, fOutline, fShadow, fSmallCaps, fCaps, ftc, hps, hpsPos, kul, qpsSpace and ico in the original CHP with the values recorded for these fields in the generated CHP.. If a field in the original CHP has the same value as the field stored in the generated CHP, then that field is reset to the value stored in the style’s CHP. If the two copies differ, then the original CHP value is left unchanged. sprmCMajority is stored only in grpprls linked to piece table entries.

sprmCHpsInc1 (opcode 106) is used to increase or decrease chp.hps by increments of 1. This sprm is interpreted by adding the two byte increment stored at byte 2 of the sprm to chp.hps. If this result is less than 8, the chp.hps is set to 8. If the result is greater than 32766, the chp.hps is set to 32766.

sprmCMajority50 (opcode 108) has the same format as sprmCMajority and is interpreted in the same way.

sprmPicScale (opcode 120) is used to scale the x and y dimensions of a Word picture and to set the cropping for each side of the picture. The sprm begins with the one byte opcode, followed by the length of the parameter (always 12) stored in a byte. The 12-byte long operand consists of an array of 6 two-byte integer fields. The 0th integer contains the new setting for pic.mx. The 1st integer contains the new setting for pic.my. The 2nd integer contains the new setting for pic.dxaCropLeft. The 3rd integer contains the new setting for pic.dyaCropTop. The 4th integer contains the new setting for pic.dxaCropRight. The 5th integer contains the new setting of pic.dxaCropBottom. sprmPicScale is stored only in grpprls linked to piece table entries.

sprmTDxaLeft (opcode 183) is called to adjust the x position within a column which marks the left boundary of text within the first cell of a table row.This sprm causes a whole table row to be shifted left or right within its column leaving the horizontal width and vertical height of cells in the row unchanged. Byte 0 of the sprm contains the opcode, and the new dxa position, call it dxaNew, is stored as an integer in bytes 1 and 2. Word interprets this sprm by adding
dxaNew - (rgdxaCenter[0] + tap.dxaGapHalf) to every entry of tap.rgdxaCenter whose index is less than tap.itcMac. sprmTDxaLeft is stored only in grpprls linked to piece table entries.

sprmTDxaGapHalf (opcode 184) adjusts the white space that is maintained between columns by changing tap.dxaGapHalf. Because we want the left boundary of text within the leftmost cell to be at the same location after the sprm is applied, Word also adjusts tap.rgdxCenter[0] by the amount that tap.dxaGapHalf changes. Byte 0 of the sprm contains the opcode, and the new dxaGapHalf, call it dxaGapHalfNew, is stored in bytes 1 and 2. When the sprm is interpreted, the change between the old and new dxaGapHalf values, tap.dxaGapHalf - dxaGapHalfNew, is added to tap.rgdxaCenter[0] and then dxaGapHalfNew is moved to tap.dxaGapHalf. sprmTDxaGapHalf is stored in PAPXs and also in grpprls linked to piece table entries.

sprmTTableBorders (opcode 187) sets the tap.rgbrcTable. The sprm is interpreted by moving 12 bytes beginning at byte 1 of the sprm to tap.rgbrcTable.

sprmTDefTable10 (opcode 188) is an obsolete version of sprmTDefTable xe "sprmTDefTable "(opcode 154) that was used in WinWord 1.x. Its contents are identical to those in sprmTDefTable, except that the TC structures contain the obsolete structures BRC10s.

sprmTDefTable (opcode 190) defines the boundaries of table cells (tap.rgdxaCenter) and the properties of each cell in a table (tap.rgtc). The 0th byte of the sprm contains its opcode. Bytes 1 and 2 store a two-byte length of the following paramter. Byte 3 contains the number of cells that are to be defined by the sprm, call it itcMac.When the sprm is interpreted, itcMac is moved to tap.itcMac. itcMac cannot be larger than 32. In bytes 4 through 4+2*(itcMac + 1) -1 , is stored an array of integer dxa values sorted in ascending order which will be moved to tap.rgdxaCenter. In bytes 4+ 2*(itcMac + 1) through byte 4+2*(itcMac + 1) + 10*itcMac - 1 is stored an array of TC entries corresponding to the stored tap.rgdxaCenter. This array is moved to tap.rgtc. sprmTDefTable is only stored in PAPXs.

sprmTDefTableShd xe "sprmTDefTableShd "(opcode 191) is similar to sprmTDefTablexe "sprmTDefTable", and compliments it by defining the shading of each cell in a table (tap.rgshd). The 0th byte of the sprm contains its opcode. Bytes 1 and 2 store a two-byte length of the following paramter. Byte 3 contains the number of cells that are to be defined by the sprm, call it itcMac. itcMac cannot be larger than 32. In bytes 4 through 4+2*(itcMac + 1) -1 , is stored an array of SHDs. This array is moved to tap.rgshd. sprmTDefTable is only stored in PAPXs.

sprmTSetBrc (opcode 193) allows the border definitions(BRCs) within TCs to be set to new values. It has the following format:

b10
b16
field
type
size
bitfield
comments

0
0
sprm
byte

opcode 193

1
1
itcFirst
byte

the index of the first cell that is to have its borders changed.

2
2
itcLim
byte

index of the cell that follows the last cell to have its borders changed

3
3

int
:4
F0
reserved

fChangeRight
int
:1
08
=1 when tap.rgtc[].brcRight is to be changed

fChangeBottom
int
:1
04
=1 when tap.rgtc[].brcBottom is to be changed

fChangeLeft
int
:1
02
=1 when tap.rgtc[].brcLeft is to be changed

fChangeTop
int
:1
01
=1 when tap.rgtc[].brcTop is to be changed

4
4
brc
BRC

new BRC value to be stored in TCs.

This sprm changes the brc fields selected by the fChange* flags in the sprm to the brc value stored in the sprm, for every tap.rgtc entry whose index is greater than or equal to itcFirst and less than itcLim.sprmTSetBrc is stored only in grpprls linked to piece table entries.

sprmTInsert (opcode 194) inserts new cell definitions in an existing table’s cell structure. The 0th byte of the sprm contains the opcode Byte 1 is the index within tap.rgdxaCenter and tap.rgtc at which the new dxaCenter and tc values will be inserted. Call this index itcInsert. Byte 2 contains a count of the cell definitions to be added to the tap, call it ctc. Bytes 3 and 4 contain the width of the cells that will be added, call it dxaCol. If there are already cells defined at the index where cells are to be inserted, tap.rgdxaCenter entries at or above this index must be moved to the entry ctc higher and must be adjusted by adding ctc*dxaCol to the value stored. The contents of tap.rgtc at or above the index must be moved 10*ctc bytes higher in tap.rgtc. If itcInsert is greater than the original tap.itcMac, itcInsert - tap.ctc columns beginning with index tap.itcMac must be added of width dxaCol (loop from itcMac to itcMac+itcInsert-tap.ctc adding dxaCol to the rgdxaCenter value of the previous entry and storing sum as dxaCenter of new entry), whose TC entries are cleared to zeros. Beginning with index itcInsert, ctc columns of width dxaCol must be added by constructing new tap.rgdxaCenter and tap.rgtc entries with the newly defined rgtc entries cleared to zeros. Finally, the number of cells that were added to the tap is added to tap.itcMac. sprmTInsert is stored only in grpprls linked to piece table entries.

sprmTDelete (opcode 195) deletes cell definitions from an existing table’s cell structure. The 0th byte of the sprm contains the opcode. Byte 1 contains the index of the first cell to delete, call it itcFirst. Byte 2 contains the index of the cell that follows the last cell to be deleted, call it itcLim. sprmTDelete causes any rgdxaCenter and rgtc entries whose index is greater than or equal to itcLim to be moved to the entry that is itcLim - itcFirst lower, and causes tap.itcMac to be decreased by the number of cells deleted. sprmTDelete is stored only in grpprls linked to piece table entries.

sprmTDxaCol (opcode 196) changes the width of cells whose index is within a certain range to be a certain value. The 0th byte of the sprm contains the opcode. Byte 1 contains the index of the first cell whose width is to be changed, call it itcFirst. Byte 2 contains the index of the cell that follows the last cell whose width is to be changed, call it itcLim. Bytes 3 and 4 contain the new width of the cell, call it dxaCol. This sprm causes the itcLim - itcFirst entries of tap.rgdxaCenter to be adjusted so that tap.rgdxaCenter[i+1] = tap.rgdxaCenter[i] + dxaCol. Any tap.rgdxaCenter entries that exist beyond itcLim are adjusted to take into account the amount added to or removed from the previous columns.sprmTDxaCol is stored only in grpprls linked to piece table entries.

sprmTMerge (opcode 197) merges the display areas of cells within a specified range. The 0th byte of the sprm contains the opcode. Byte 1 contains the index of the first cell that is to be merged, call it itcFirst. Byte 2 contains the index of the cell that follows the last cell to be merged, call it itcLim. This sprm causes tap.rgtc[itcFirst].fFirstMerged to be set to 1. Cells in the range whose index is greater than itcFirst and less than itcLim have tap.rgtc[].fMerged set to 1. sprmTMerge is stored only in grpprls linked to piece table entries.

sprmTSplit (opcode 198) splits the display areas of merged cells into their originally assigned display areas. The 0th byte of the sprm contains the opcode. Byte 1 contains the index of the first cell that is to be split, call it itcFirst. Byte 2 contains the index of the cell that follows the last cell to be split, call it itcLim. This sprm clears tap.rgtc[].fFirstMerged and tap.rgtc[].fMerged for all rgtc entries >= itcFirst and < itcLim. sprmTSplit is stored only in grpprls linked to piece table entries.

SprmTSetBrc10 (opcode 199) has the same format as SprmTSetBrc xe "sprmTSetBrc "but uses the old BRC10 structure.

sprmTSetShd xe "sprmTSetShd "(opcode 200) allows the shading definitions(SHDs) within a tap to be set to new values. The 0th byte of the sprm contains the opcode. Byte 1 contains the index of the first cell whose shading is to be changed, call it itcFirst. Byte 2 contains the index of the cell that follows the last cell whose shading is to be changed, call it itcLim. Bytes 3 and 4 contain the SHD structure, call it shd. This sprm causes the itcLim - itcFirst entries of tap.rgshd to be set to shd. sprmTDxaCol is stored only in grpprls linked to piece table entries.

COMPLEX FILE FORMAT

The complex file format is used when a file is fast-saved. A complex file has fib.fComplex set to 1. In a complex file, fcClx is the fc where the complex part of the file begins, and cbClx is the size (in bytes) of the complex part. The complex part of the file contains a group of grpprls that encode formatting changes made by the user and a piece table (plcfpcd). The piece table is needed because the text of the document is not stored contiguously in the file after a fast save.

The complex part of a file (CLX) is composed of a number of variable-sized blocks of data. Recorded first are any grpprls that may be referenced by the plcfpcd (if the plcfpcd has no grpprl references, no grpprls will be recorded) followed by the plcfpcd. Each block in the complex part is prefaced by a clxt (clx type), which is a 1-byte code, either 1 (meaning the block contains a grpprl) or 2 (meaning this is the plcfpcd). In both cases, the clxt is followed by a 2-byte cb which is the count of bytes of the grpprl or the piece table. So the formats of the two types of blocks are:

clxt = 1
clxtGrpprl

cb
count of bytes in grpprl

grpprl
see "Definitions" for description of grpprl; a grpprl can contain sprms modifying character, paragraph, table, section or picture properties

or

clxt = 2
clxtPlcfpcd

cb
count of bytes in piece table

plcfpcd
piece table

The entire CLXwould look like this, depending on the number of grpprl's:

clxtGrpprl

cb

grpprl (0th grpprl)

clxtGrpprl

cb

grpprl (1st grpprl)

...

clxtPlcfpcd

cb

plcfpcd

When the prm in pcds stored in the plcfpcd, contains an igrpprl (index to a grpprl), the index stored is the order in which that grpprl was stored in the CLX.

Algorithm to determine the bounds of a paragraph containing a certain character in a complex file

When a document is recorded in non-complex format, the bounds of the paragraph that contains a particular character can be found by calculating the FC coordinate of the character, searching the bin table to find an FKP page that describes that FC, fetching that FKP, and then searching the FKP to find the interval in the rgfc that encloses the character. The bounds of the interval are the fcFirst and fcLim of the containing paragraph. Every character greater than or equal to fcFirst and less than fcLim is part of the containing paragraph.

When a document is recorded in complex format, a piece that was originally part of one paragraph can be copied or movedwithin a different paragraph. To find the beginning of the paragraph containing a character in a complex document, it’s first necessary to search for the piece containing the character in the piece table. Then calculate the FC in the file that stores the character from the piece table information. Using the FC, search the FCs FKP for the largest FC less than the character’s FC, call it fcTest. If the character at fcTest-1 is contained in the current piece, then the character corresponding to that FC in the piece is the first character of the paragraph. If that FC is before or marks the beginning of the piece, scan a piece at a time towards the beginning of the piece table until a piece is found that contains a paragraph mark. This can be done by using the end of the piece FC, finding the largest FC in its FKP that is less than or equal to the end of piece FC, and checking to see if the character in front of the FKP FC (which must mark a paragraph end) is within the piece. When such an FKP FC is found, the FC marks the first byte of paragraph text.

To find the end of a paragraph for a character in a complex format file, again it is necessary to know the piece that contains the character and the FC assigned to the character. Using the FC of the character, first search the FKP that describes the character to find the smallest FC in the rgfc that is larger than the character FC. If the FC found in the FKP is less than or equal to the limit FC of the piece, the end of the paragraph that contains the character is at the FKP FC minus 1. If the FKP FC that was found was greater than the FC of the end of the piece, scan piece by piece toward the end of the document until a piece is found that contains a paragraph end mark. It’s possible to check if a piece contains a paragraph mark by using the FC of the beginning of the piece to search in the FKPs for the smallest FC in the FKP rgfc that is greater than the FC of the beginning of the piece. If the FC found is less than or equal to the limit FC of the piece, then the character that ends the paragraph is the character immediately before the FKP FC.

A special procedure must be followed to locate the last paragraph of the main document text when footnote or header/footer text is saved in a Word file (ie. when fib.ccpFtn != 0 or fib.ccpHdr != 0).

In this case the CP of that paragraph mark is fib.ccpText + fib.ccpFtn + fib.ccpHdr + fib.ccpMcr + fib.ccpAtn and the limit CP of the entire plcfpcd is fib.ccpText + fib.ccpFtn + fib.ccpHdr + fib.ccpMcr + fib.ccpAtn + 1.

Algorithm to determine paragraph properties for a paragraph in a complex file

Having found the index i of the FC in an FKP that marks the character stored in the file immediately after the paragraph’s paragraph mark, it is necessary to use the word offset stored in the first byte of the fkp.rgbx[i - 1] to find the PAPX for the paragraph. Using papx.istd to index into the properties stored for the style sheet , the paragraph properties of the style are copied to a local PAP. Then the grpprl stored in the PAPX is applied to the local PAP, and papx.istd along with fkp.rgbx.phe are moved into the local PAP. The process thus far has created a PAP that describes what the paragraph properties of the paragraph were at the last full save. Now it’s necessary to apply any paragraph sprms that were linked to the piece that contains the paragraph’s paragraph mark. If pcd.prm.fComplex is 0, pcd.prm contains 1 sprm which should only be applied to the local PAP if it is a paragraph sprm. If pcd.prm.fComplex is 1, pcd.prm.igrpprl is the index of a grpprl in the CLX. If that grpprl contains any pargraph sprms, they should be applied to the local PAP. After applying all of the sprms for the piece, the local PAP contains the correct paragraph property values.

Algorithm to determine table properties for a table row in a complex file

To determine the table properties for a table row in a complex file,scan paragraph-by-paragraph toward the end of the table row, until a paragraph is found that has pap.fTtp set to 1. This paragraph consists of a single row end character. This row end character is linked to the table properties of the row. To create the TAP for the table row, clear a local TAP to zeros. Then the PAPX for the row end character must be fetched from an FKP, and the table sprms that are stored in this PAPX must be applied to the local TAP. The process thus far has created a TAP that describes what the table properties of the table row were at the last full save. Now apply any table sprms that were linked to the piece that contains the table row’s row end character. If pcd.prm.fComplex is 0, pcd.prm contains 1 sprm which should be applied to the local TAP if it is a table sprm. If pcd.prm.fComplex is 1, pcd.prm.igrpprl is the index of a grpprl in the CLX. If that grpprl contains any table sprms, apply them to the local TAP. After all of the sprms for the piece are applied, the local TAP contains the correct table property values for the table row.

Algorithm to determine the character properties of a character in a complex file

It is first necessary to fetch the paragraph properties of the paragraph that contains the character. The pap.istd of the fetched properties specifies which style sheet entry provides the default character properties for the character. The character properties recorded in the style sheet for that style are copied into a local CHP. Then, the piece containing the character is located in the piece table (plcfpcd) and the fc of the character is calculated. Using the character’s FC, the page number of the CHPX FKP that describes the character is found by searching the bin table (hplcfbteChpx). The CHPX FKP stored in that page is fetched and then the rgfc in the FKP is searched to locate the bounds of the run of exception text that encompasses the character. The CHPX for that run is then located within the FKP, and the CHPX is applied to the contents of the local CHP. The process thus far has created a CHP that describes what the character properties of the character were at the last full save.Now apply any character sprms that were linked to the piece that contains the character. If pcd.prm.fComplex is 0, pcd.prm contains 1 sprm which should be applied to the local CHP if it is a character sprm. If pcd.prm.fComplex is 1, pcd.prm.igrpprl is the index of a grpprl in the CLX. If that grpprl contains any character sprms, apply them to the local CHP. After applying all of the sprms for the piece,the local CHP contains the correct properties for the character.

Characters that are within the same piece, same paragraph, and same run of exception text are guaranteed to have the same properties. This fact can be used to construct a scanner that can return the limit CPs and properties of a sequence of characters that all have the same properties.

Algorithm to determine the section properties of a section in a complex file

To determine which section a character belongs to and what its section properties are, it is necessary to use the CP of the character to search the plcfsed for the index i of the largest CP that is less than or equal to the character’s CP. plcfsed.rgcp[i] is the CP of the first character of the section and plcfsed.rgcp[i+1] is the CP of the character following the section mark that terminates the section (call it cpLim). Then retrieve plcfsed.rgsed[i]. The FC in this SED gives the location where the SEPX for the section is stored. Then create a local SEP with default section properties. If the sed.fc != 0xFFFFFFFF, then the sprms within the SEPX that is stored at offset sed.fc must be applied to the local SEP. The process thus far has created a SEP that describes what the section properties of the section at the last full save. Now apply any section sprms that were linked to the piece that contains the section’s section mark. If pcd.prm.fComplex is 0, pcd.prm contains 1 sprm which should be applied to the local SEP if it is a section sprm. If pcd.prm.fComplex is 1, pcd.prm.igrpprl is the index of a grpprl in the CLX. If that grpprl contains any section sprms, they should be applied to the local SEP. After applying all of the section sprms for the piece , the local SEP contains the correct section properties.

Algorithm to determine the pic of a picture in a complex file.

The picture sprms contained in the prm's grpprl apply to any picture characters within the piece that have their chp.fSpec character == fTrue. The picture properties for a picture (the PIC described in the Structure Definitions) are derived by fetching the PIC stored with the picture and applying to that PIC any picture sprms linked to the piece containing the picture special character.

FOOTNOTES

In Windows Word the text of a footnote is anchored to a particular position within the document’s main text , the location of its footnote reference. There is a structure referenced by the fib, the plcffndRef, which records the locations of the footnote references within the main text address space and another structure referenced by the fib, the plcffndTxt, which records the beginning locations of corresponding footnote text within the footnote text address space . The footnote text characters in a full saved file begin at at offset fib.fcMin + fib.ccpText and extends till fib.fcMin + fib.ccpText + fib.ccpFtn. In a complex fast-saved document , the footnote text begins at CP fib.ccpText and extends till fib.ccpText + fib.ccpFtn. To find the location of the ith footnote reference in the main text address space, look up the ith entry in the plcffndRef and find the location of the text coresponding to the reference within the footnote text address space by looking up the ith entry in the plcffndTxt.

When there are n footnotes, the plcffndTxt structure consists of n+2 CP entries. The CP entries mark the beginning character position within the footnote text address space of the footnote text for the footnotes defined for the file. The beginning CP of the text of the ith footnote is the ith CP within the plcffndTxt. The limit CP of the text of the ith footnote is the i+1st CP within the plcffndTxt.

The last character of footnote text for a footnote (ie. the character at limit CP - 1) is always a paragraph end(ASCII 13). If there are n footnotes, the n+2nd CP entry value is always 1 greater than the n+1st CP entry value. A paragraph end (ASCII 13) is always stored at the file position marked by the n+1st CP value.

When there are n footnotes, the plcffndRef structure consists of n+1 CP entries followed by n integer flags, named fAuto. The ith CP in the plcffndRef corresponds to the ith fAuto flag. The CP entries give the locations of footnote references within the main text address space. The n+1th CP entry contains the value fib.ccpText + fib.ccpFtn + fib.ccpHdr + 1. The fAuto flag contains 1 whenever the footnote reference name is auto-generated by Word.

When a footnote reference name is automatically generated by Word, Word generates the name by adding 1 to the index number of the reference in the plcffndRef and translating that number to ASCII text. When the footnote reference is auto generated, the character at the main text CP position for the footnote reference should be a footnote reference character (ASCII 5) which has a chp recorded with chp.fSpec = 1.

The number of footnotes stored in a Word binary file can be found by dividing fib.cbPlcffndTxt by 4 and subtracting 1.

HEADERS AND FOOTERS

The header and footer text characters in a full saved file begin at at offset fib.fcMin + fib.ccpText + fib.ccpFtn and extend till fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdr. In a complex fast-saved document , the footnote text begins at CP fib.ccpText + fib.ccpFtn and extends till fib.ccpText + fib.ccpFtn + fib.ccpHdr. The plcfhdd, a table whose location and length within the file is stored in fib.fcPlcfhdd and fib.cbPlcfhdd, describes where the text of each header/footer begins. If there are n headers/footers stored in the Word file, the plcfhdd consists of n + 2 CP entries. The beginning CP of the ith header/footer is the ith CP in the plcfhdd. The limit CP (the CP of character 1 position past the end of a header/footer) of the ith header/footer is the i + 1 st CP in the plcfhdd. Note that at the limit CP - 1, Word always places a chEop as a placeholder which is never displayed as part of the header/footer. This allows Word to change an existing header/footer to be empty.

If there are n header/footers, the n+2nd CP entry value is always 1 greater than the n+1st CP entry value. A paragraph end (ASCII 13) is always stored at the file position marked by the n+1st CP value.

The transformation in a full saved file from a header/footer CP to an offset from the beginning of a file (fc) is fc = fib.fcMin + ccpText + ccpFtn + cp.

In Windows Word, headers/footers can be defined for a document that:

1) will act as a separator between main text and footnote text

2) will print below footnote text on a page when footnote text must be continued on a succeeding page (continuation separator)

3) will print above footnote text on a page when the text must be continued from a previous page (continuation notice)

Also for each section defined for the document, distinct headers can be defined for printing on odd-numbered/right facing pages, even-numbered /left facing pages and the first page of a section. Similarly for each document section, distinct footers can be defined for printing on odd-numbered/right facing pages, even-numbered/left facing pages and the first page of a section.

Within the document and the section properties of a document (the DOP and SEP) is a field, the grpfIhdt, which enumerates which of the header/footer types are defined for the document or for a particular section. The grpfIhdt in both the DOP and SEP is treated as a group of bit flags stored within a character field with a flag assigned to every type of header/footer that is possible to define for DOPs and SEPs. When a bit is on, it signifies that the header/footer type corresponding to the bit is defined for the document or for a particular section.

Definition of the bits of dop.grpfIhdt:

Bit position

7
footnote separator defined when == 1 (fTrue).

6
footnote continuation separator defined when == 1 (fTrue).

5
footnote continuation notice defined when == 1 (fTrue).

Definition of the bits of sep.grpfIhdt:

Bit position

7
header for even pages defined when == 1 (fTrue).

6
header for odd pages defined when == 1 (fTrue).

5
footer for even pages defined when == 1 (fTrue).

4
footer for odd pages defined when == 1 (fTrue).

3
header for first page of section defined when == 1 (fTrue).

2
footer for first page of section defined when == 1 (fTrue).

Given that a particular footnote separator exists, one can locate the text for that separator using the following algorithm:

Initially set ihdd (index into plcfhdd) to 0.

Scan bits 7, 6, and 5 of the dop.grpfIhdt in order looking for bit == 1 while you have not yet reached the bit corresponding to the separator whose text is to be located. For each such bit ==1 add 1 to ihdd.

The value of ihdd that results is the index into plcfhdd that can be used to access the text of the separator.

Given that a particular header/footer exists for a particular section, one can locate the text for that header/footer using the following algorithm:

initially set ihdd (index into plcfhdd) to 0.

scan bits 7, 6, and 5 of the dop.grpfIhdt looking for bit == 1 and add 1 to ihdd for each such bit == 1.

Examine the sep.grpfIhdt of each section preceding the section of the header/footer to be located in ascending section number order, scanning bits 7, 6, 5, 4, 3, and 2 of the sep.grpfIhdt in order, adding 1 to ihdd for each bit == 1.

For the section of the header/footer to be located, scan bits 7, 6, 5, 4, 3, and 2 of the sep.grpfIhdt in order looking for bit == 1 while you have not yet reached the bit corresponding to the header/footer to be located. For each such bit ==1 add 1 to ihdd.

The value of ihdd that results is the index into plcfhdd that can be used to access the text of the header/footer.

Page Table

The plcfpgd, referenced by the fib, gives the location of page breaks within a Word document and may optionally be saved in a Word binary file. If there are n page breaks calculated for a document, the plcfpgd would consist of n+1 CP entries followed by n PGD entries.

Third-party creators of Windows Word files should not attempt to create a plcfpgd. It can only be created properly using Windows Word's page layout routines. If a Windows Word document is edited in any way, the plcfpgd should be deleted by setting fib.cbPlcfpgd to 0.

If there are n pages breaks recorded for the document stored, the n+1st CP stored in the array of CPs for the plcfpgd will have the value fib.ccpText + fib.ccpFtn + fib.ccpHdr + 1 if the document contains footnotes or header/footers and will have the value fib.ccpText + fib.ccpFtn + fib.ccpHdr if the document contains no subdocuments.

Glossary Files

A Word glossary file is a normal Word binary file with two supplemental files, the sttbfglsy and the plcfglsy, also stored in the file. The sttbfglsy contains a list of the names of glossary entries, and the plcfglsy contains a table of beginning positions within the text address space of the file of the text of glossary entries.

The sttbfglsy begins with an integer count of bytes of the size of the sttbfglsy (includes the size of the integer count of bytes). If there are n glossary entries defined, there will follow n pascal-type strings (string preceded by length byte) concatenated one after the other which store glossary entry names. The glossary entry names must be sorted in case-insensitive ascending order. (ie. a and A are treated as equal). Also the names date and time must be included in the list of names. The name of the ith glossary entry is the ith name defined in the sttbfglsy.
If there are n glossary entries, the plcfglsy, will consist of n+2 CP entries. The ith CP entry will contain the location of the beginning of the text for the ith glossary entry. The i+1st CP entry will contain the limit CP of the ith glossary entry. The character at a CP position of limit CP - 1 is always a paragraph mark. The n+2nd CP entry always contains fib.ccpText + fib.ccpFtn + fib.ccpHdr + 1 if there are headers, footers or footnotes stored in the glossary and contains fib.ccpText + fib.ccpFtn + fib.ccpHdr otherwise.The n+1st CP entry is always 1 less than the value of the n+2nd entry.

The text for the time and date entries will always be a single paragraph mark (ASCII 13).

STTBFASSOCxe "sttbfAssoc"(Table of Associated Strings)

The following are indices into a table of associated strings:

ibst
index
description

ibstAssocFileNext
0
unused

ibstAssocDot
1
filename of associated template

ibstAssocTitle
2
title of document

ibstAssocSubject
3
subject of document

ibstAssocKeyWords
4
keywords of document

ibstAssocComments
5
comments of document

ibstAssocAuthor
6
author of document

ibstAssocLastRevBy
7
name of person who last revised the document

ibstAssocDataDoc
 8
filename of data document

ibstAssocHeaderDoc
 9
filename of header document

ibstAssocCriteria1
 10
packed string used by print merge record selection

ibstAssocCriteria2
 11
packed string used by print merge record selection

ibstAssocCriteria3
 12
packed string used by print merge record selection

ibstAssocCriteria4
 13
packed string used by print merge record selection

ibstAssocCriteria5
 14
packed string used by print merge record selection

ibstAssocCriteria6
 15
packed string used by print merge record selection

ibstAssocCriteria7
 16
packed string used by print merge record selection

ibstAssocMax
17
maximum number of strings in string table

The format of the ibstAssocCriteriaX strings are as follows:

int cbIbstAssoc:8;
// BYTE 0 size of ibstAssocCriteriaX string

int fCompOr:1;

// BYTE 1 set if cond is an or cond

int iCompOp:7;

// BYTE 1 index of Comparison Operator

char stMergeField[];
// Name of MergeField

char stCompInfo[];
// User Supplied Comparison Information

Both stMergeField and stCompInfo are variable length character arrays preceded by a length byte.

Structure Definitions

Autonumbered List Data Descriptor (ANLD)
xe "ANLD"
b10
b16
field
type
size
bitfield
comments

0
0
nfc
unsigned char

number format code
0
Arabic numbering
1
Upper case Roman
2
Lower case Roman
3
Upper case Letter
4
Lower case letter
5
Ordinal

1
1
cbTextBefore
unsigned char

offset into anld.rgch that is the limit of the text that will be displayed as the prefix of the autonumber text

2
2
cbTextAfter
unsigned char

anld.cbTextBefore will be the beginning offset of the text in the anld.rgchthat will be displayed as the suffix of an autonumber. The sum of anld.cbTextBefore + anld.cbTextAfter will be the limit of the autonumber suffix in anld.rgch

3
3
jc
uns char
:2
03
justification code

0
left justify

1
center

2
right justify

3
left and right justify

fPrev
uns char
:1
04
when ==1, number generated will include previous levels (used for legal numbering)

fHang
uns char
:1
08
when ==1, number will be displayed using a hanging indent

fSetBold
uns char
:1
10
when ==1, boldness of number will be determined by anld.fBold.

fSetItalic
uns char
:1
20
when ==1, italicness of number will be determined by anld.fItalic

fSetSmallCaps
uns char
:1
40
when ==1, anld.fSmallCaps will determine whether number will be displayed in small caps or not.

fSetCaps
uns char
:1
80
when ==1, anld.fCaps will determine whether number will be displayed capitalized or not

4
4
fSetStrike
uns char
:1
01
when ==1, anld.fStrike will determine whether the number will be displayed using strikethrough or not.

fSetKul
uns char
:1
02
when ==1, anld.kul will determine the underlining state of the autonumber.

fPrevSpace
uns char
:1
04
when ==1, autonumber will be displayed with a single prefixing space character

fBold
uns char
:1
08
determines boldness of autonumber when anld.fSetBold == 1.

fItalic
uns char
:1
10
determines italicness of autonumber when anld.fSetItalic == 1.

fSmallCaps
uns char
:1
20
determines whether autonumber will be displayed using small caps when anld.fSetSmallCaps == 1.

fCaps
uns char
:1
40
determines whether autonumber will be displayed using caps when anld.fSetCaps == 1.

fStrike
uns char
:1
80
determines whether autonumber will be displayed using caps when anld.fSetStrike == 1.

5
5
kul
uns char
:3
07
determines whether autonumber will be displayed with underlining when anld.fSetKul == 1.

ico
uns char
:5
F1
color of autonumber

6
6
ftc
short

font code of autonumber

8
8
hps
uns short

font half point size (or 0=auto)

10
A
iStartAt
uns short

starting value (0 to 65535)

12
C
dxaIndent

width of prefix text (same as indent)

14
E
dxaSpace
uns short

minimum space between number and paragraph

16
10
fNumber1
uns char

number only 1 item per table cell

17
11
fNumberAcross
uns char

number across cells in table rows(instead of down)

18
12
fRestartHdn
uns char

restart heading number on section boundary

19
13
fSpareX
uns char

unused(should be 0)

20
14
rgchAnld
array of 32 chars

characters displayed before/after autonumber

*cbANLD (count of bytes of ANLD) is 52 (decimal), 34(hex).

Autonumber Level Descriptor (ANLV)
xe "ANLV"
b10
b16
field
type
size
bitfield
comments

0
0
nfc
unsigned char

number format code
0
Arabic numbering
1
Upper case Roman
2
Lower case Roman
3
Upper case Letter
4
Lower case letter
5
Ordinal

1
1
cbTextBefore
unsigned char

offset into anld.rgch that is the limit of the text that will be displayed as the prefix of the autonumber text

2
2
cbTextAfter
unsigned char

anld.cbTextBefore will be the beginning offset of the text in the anld.rgchthat will be displayed as the suffix of an autonumber. The sum of anld.cbTextBefore + anld.cbTextAfter will be the limit of the autonumber suffix in anld.rgch

3
3
jc
uns char
:2
03
justification code

0
left justify

1
center

2
right justify

3
left and right justify

fPrev
uns char
:1
04
when ==1, number generated will include previous levels (used for legal numbering)

fHang
uns char
:1
08
when ==1, number will be displayed using a hanging indent

fSetBold
uns char
:1
10
when ==1, boldness of number will be determined by anld.fBold.

fSetItalic
uns char
:1
20
when ==1, italicness of number will be determined by anld.fItalic

fSetSmallCaps
uns char
:1
40
when ==1, anld.fSmallCaps will determine whether number will be displayed in small caps or not.

fSetCaps
uns char
:1
80
when ==1, anld.fCaps will determine whether number will be displayed capitalized or not

4
4
fSetStrike
uns char
:1
01
when ==1, anld.fStrike will determine whether the number will be displayed using strikethrough or not.

fSetKul
uns char
:1
02
when ==1, anld.kul will determine the underlining state of the autonumber.

fPrevSpace
uns char
:1
04
when ==1, autonumber will be displayed with a single prefixing space character

fBold
uns char
:1
08
determines boldness of autonumber when anld.fSetBold == 1.

fItalic
uns char
:1
10
determines italicness of autonumber when anld.fSetItalic == 1.

fSmallCaps
uns char
:1
20
determines whether autonumber will be displayed using small caps when anld.fSetSmallCaps == 1.

fCaps
uns char
:1
40
determines whether autonumber will be displayed using caps when anld.fSetCaps == 1.

fStrike
uns char
:1
80
determines whether autonumber will be displayed using caps when anld.fSetStrike == 1.

5
5
kul
uns char
:3
07
determines whether autonumber will be displayed with underlining when anld.fSetKul == 1.

ico
uns char
:5
F1
color of autonumber

6
6
ftc
short

font code of autonumber

8
8
hps
uns short

font half point size (or 0=auto)

10
A
iStartAt
uns short

starting value (0 to 65535)

12
C
dxaIndent

width of prefix text (same as indent)

14
E
dxaSpace
uns short

minimum space between number and paragraph

cbANLV is 16 bytes (decimal), 10 bytes (hex).

).

The BRC is a substructure of the PAP, PIC and TC. See also the obsolete BRC10 structure.

BooKmark First descriptor (BKF)
xe "BKF"
b10
b16
field
type
size
bitfield
comments

0
0
ibkl
short

index to BKL entry in plcfbkl that describes the ending position of this bookmark in the CP stream.

2
2
itcFirst
uns short
:7
007F
when bkf.fCol is 1, this is the index to the first column of a table column bookmark.

fPub
uns short
:1
0080
when 1, this indicates that this bookmark is marking the range of a Macintosh Publisher section.

itcLim
uns short
:7
7F00
when bkf.fCol is 1, this is the index to limit column of a table column bookmark.

fCol
uns short :1
8000
when 1, this bookmark marks a range of columns in a table specified by [bkf.itcFirst, bkf.itcLim).

cbBKF is 4.

BooKmark Lim descriptor (BKL)
xe "BKL"
b10
b16
field
type
size
bitfield
comments

0
0
ibkf
short

index to BKF entry in plcfbkf that describes the beginning position of this bookmark in the CP stream. If the bkl.ibkf is negative, add on the number of boomarks recorded in the hplcbkf to the bkl.ibkf to calculate the index to the BKF that corresponds to this entry.

cbBKL is 2.

The BRC is a substructure of the PAP, PIC and TC. See also the obsolete BRC10 structure.

Border Code (BRC)
xe "BRC"
b10
b16
field
type
size
bitfield
comments

0
0
dxpLineWidth
int
:3
0007
When dxpLineWidth is 0, 1, 2, 3, 4, or 5, this field is the width of a single line of border in units of 0.75 points. Each line in the border is this wide (e.g. a double border is three lines). Must be nonzero when brcType is nonzero.

When dxpLineWidth is 6, it means that the border line is dotted.

When dxpLineWidth is 7, it means the border line is dashed.

brcType
int
:2
0018
border type code
0 none
1 single
2 thick
3 double

fShadow
int
:1
0020
when 1, border is drawn with shadow. Must be 0 when BRC is a substructure of the TC

ico
int
:5
07C0
color code (see chp.ico)

dxpSpace
int
:5
F800
width of space to maintain between border and text within border. Must be 0 when BRC is a substructure of the TC. Stored in points for Windows.

Border Code for Windows Word 1.0 (BRC10)

b10
b16
field
type
size
bitfield
comments

0
0
dxpLine2Width
int
:3
0007
width of second line of border in pixels

dxpSpaceBetween int
:3
0038
distance to maintain between both lines of border in pixels

dxpLine1Width
int
:3
01C0
width of first border line in pixels

dxpSpace
int
:5
3E00
width of space to maintain between border and text within border. Must be 0 when BRC is a substructure of the TC.

fShadow
int
:1
4000
when 1, border is drawn with shadow. Must be 0 when BRC10 is a substructure of the TC.

fSpare
int
:1
8000
reserved

The seven types of border lines that Windows Word 1.0 supports are coded with different sets of values for dxpLine1Width, dxpSpaceBetween, and dxpLine2 Width.

The border lines and their brc10 settings follow:

line type
dxpLine1Width
dxpSpaceBetween
dxpLine2Width

no border
0
0
0

single line border
1
0
0

two single line border
1
1
1

fat solid border
4
0
0

thick solid border
2
0
0

dotted border
6 (special value meaning dotted line)
0
0

hairline border
7(special value meaning hairline)
0
0

When the no border settings are stored in the BRC, brc.fShadow and brc.dxpSpace should be set to 0.
The CHP is never stored in Word files. It is the result of decompression operations applied to CHPXs

The CHPX is stored in CHPX FKPS and within the STSH
(Note: when a CHPX is stored in an FKP it is prefixed by a one-byte count of bytes that records the size of the non-zero prefix of the CHPX. Since the count of bytes must begin on an even boundary within the FKP followed by the non-zero prefix, it's guaranteed that the int and FC fields of the CHPX are aligned on an odd-byte boundary. Using normal integer or long load instructions will cause address errors on a 68000. The best technique for reconstituting the CHPX is to move the non-zero prefix to the beginning of a local instance of a CHPX that has been cleared to zeros.)

Character Properties (CHP xe "CHP ")

b10
b16
field
type
size
bitfield
comment

0
0
fBold
int
:1
0001
text is bold when 1 , and not bold when 0.

fItalic
int
:1
0002
italic when 1, not italic when 0

fRMarkDel
int
:1
0004
when 1, text has been deleted and will be displayed with strikethrus when revision marked text is to displayed

fOutline
int
:1
0008
outlined when 1, not outlined when 0

fFldVanish
int
:1
0010
<needs work>

fSmallCaps
int
:1
0020
displayed with small caps when 1, no small caps when 0

fCaps
int
:1
0040
displayed with caps when 1, no caps when 0

fVanish
int
:1
0080

1
1
fRMark
int
:1
0100
when 1, text is newly typed since the last time revision marks have been accepted and will be displayed with an underline when revision marked text is to be displayed

fSpec
int
:1
0200
character is a Word special character when 1, not a special character when 0

fStrike
int
:1
0400
displayed with strikethrough when 1, no strikethrough when 0

fObj
int
:1
0800
embedded object when 1, not an embedded object when 0

fShadow
int
:1
1000
character is drawn with a shdow when 1; drawn without shadow when 0

fLowerCase
int
:1
2000
character is displayed in lower case when 1. No case transformation is performed when 0. This field may be set to 1 only when chp.fSmallCaps is 1.

fData
int
:1
4000
when 1, chp.fcPic points to an FFDATA the data structure binary data used by Word to describe a form field. chp.fData may only be 1 when chp.fSpec is also 1 and the special character in the document stream that has this property is a chPicture (0x01).

fOle2
int
:1
8000
when 1, chp.lTagObj specifies a particular object in the object stream that specifies the particular OLE object in the stream that should be displayed when the chPicture fSpec character that is tagged with the fOle2 is encountered. chp.fOle2 may only be 1 when chp.fSpec is also 1 and the special character in the document stream that has this property is a chPicture (0x01).

2

2

int
:16
FFFF
Reserved

4
4
ftc
short

font code. The ftc is an index into the rgffn structure. The rgffn entry indexed by ftc describes the font that will be used to display the run of text described by the CHP.

6
6
hps
unsigned short

font size in half points

8
8
dxaSpace
short

space following each character in the run expressed in twip units.

10
A
iss
int
:3
0007
superscript/subscript indices
0 means no super/subscripting
1 means text in run is superscripted
2 means text in run is subscripted

int
:3
0038
reserved

fSysVanish
int
:1
0040
used by Word internally, not stored in file

int
:1
0080
reserved

11
B
ico
int
:5
1F00
color of text:

0
Auto
9
DkBlue

1
Black
10
DkCyan

2
Blue
11
DkGreen

3
Cyan
12
DkMagenta

4
Green
13
DkRed

5
Magenta
14
DkYellow

6
Red
15
DkGray

7
Yellow
16
LtGray

8
White

kul
int
:3
E000
underline code:

0
none

1
single

2
by word

3
double

4
dotted

5
hidden

12
C
hpsPos
short

super/subscript position in half points; positive means text is raised; negative means text is lowered.

14
E
lid
LID

language identification code
Language Name
Language ID
Arabic
0x0401
Bulgarian
0x0402
Catalan
0x0403
Traditional Chinese
0x0404
Simplified Chinese
0x0804
Czech
0x0405
Danish
0x0406
German
0x0407
Swiss German
0x0807
Greek
0x0408
U.S. English
0x0409
U.K. English
0x0809
Austalian English
0x0c09
Castilian Spanish
0x040a
Mexican Spanish
0x080a
Finnish
0x040b
French
0x040c
Belgian French
0x080c
Canadian French
0x0c0c
Swiss French
0x100c
Hebrew
0x040d
Hungarian
0x040e
Icelandic
0x040f
Italian
0x0410
Swiss Italian
0x0810
Japanese
0x0411
Korean
0x0412
Dutch
0x0413
Belgian Dutch
0x0813
Norwegian - Bokmal
0x0414
Norwegian - Nynorsk
0x0814
Polish
0x0415
Brazilian Portuguese
0x0416
Portuguese
0x0816
Rhaeto-Romanic
0x0417
Romanian
0x0418
Russian
0x0419
Croato-Serbian (latin)
0x041a
Serbo-Croatian (cyrillic)
0x081a
Slovak
0x041b
Albanian
0x041c
Swedish
0x041d
Thai
0x041e
Turkish
0x041f
Urdu
0x0420
Bahasa
0x0421

16
10
fcPic
FC

offset in document stream pointing to beginning of a picture when character is a picture character (character is 0x01 and chp.fSpec is 1)

16
10
fcObj
FC

offset in document stream pointing to beginning of a picture when character is an OLE1 object character (character is 0x20 and chp.fSpec is 1, chp.fOle2 is 0)

16
10
lTagObj
unsigned long

long word tag that identifies an OLE2 object in the object stream when the character is an OLE2 object character. (character is 0x01 and chp.fSpec is 1, chp.fOle2 is 1)

20
14
ibstRMark
short

index to author IDs stored in hsttbfRMark. used when text in run was newly typed or deleted when revision marking was enabled

22
16
dttmRMark
DTTM

Date/time at which this run of text was entered/modified by the author. (Only recorded when revision marking is on.)

26
1A
short

reserved

28
1C
istd
unsigned short

index to character style descriptor in the stylesheet that tags this run of text When istd is istdNormalChar (10 decimal), characters in run are not affected by a character style. If chp.istd contains any other value, chpx of the specified character style are applied to CHP for this run before any other exceptional properties are applied.

30
1E
ftcSym
short

when chp.fSpec is 1 and the character recorded for the run in the document stream is chSymbol (0x28), chp.ftcSym identifies the font code of the symbol font that will be used to display the symbol character recorded in chp.chSym. Just like chp.ftc, chp.ftcSym is an index into the rgffn structure.

32
20
chSym
unsigned char

when chp.fSpec is 1 and the character recorded for the run in the document stream is chSymbol (0x28), the character stored chp.chSym will be displayed using the font specified in chp.ftcSym.

33
21
fChsDiff
unsigned char

when 1, the character set used to interpret the characters recorded in the run identified by chp.chse is different from the native character set for this document which is stored in fib.chse.

34
22
idslRMReason
short

an index to strings displayed as reasons for actions taken by Word’s AutoFormat code

36
24
ysr
unsigned character
hyphenation rule
0
No hyphenation
1
Normal hyphenation
2
Add letter before hyphen
3
Change letter before hyphen
4
Delete letter before hyphen
5
Change letter after hyphen
6
Delete letter before the hyphen

and change the letter preceding the

deleted character

37
25
chYsr
unsigned character
the character that will be used to add or change a letter when chp.ysr is 2,3, 5 or 6

38
26
chse
unsigned short

extended character set id
0
characters in run should be

interpreted using the ANSI

set used by Windows
256
characters in run should be

interpreted using the Macintosh

character set.

40
28
hpsKern
unsigned short

kerning distance for characters in run recorded in half points

*cbCHP (count of bytes of CHP) is 42 (decimal), 2A(hex).

Character Property Exceptions (CHPXxe "CHPX ")

The CHPX is stored within Character FKPs and within the STSH in STDs for paragraph style and character style entries.

b10
b16
field
type
size
bitfield
comments

0
0
cb
byte

count of bytes of following data in CHPX.

1
1
grpprl
character array

a list of the sprms that encode the differences between CHP for a run of text and the CHP generated by the paragraph and character styles that tag the run.

The following sprms may be recorded in a CHPX:

sprm
fields in CHP altered by sprm

sprmCFSpec
chp.fSpec

sprmCSymbol
chp.chSym, chp.ftcSym

sprmCPicLocation
chp.fcPic

sprmCFStrikeRM
chp.fRMarkDel

sprmCFRMark
chp.fRMark

sprmCFFldVanish
chp.fFldVanish

sprmCIbstRMark
chp.ibstRMark

sprmCDttmRMark
chp.dttmRMark

sprmCRMReason
chp.idslRMReason

sprmCIstd
chp.istd

sprmCFBold
chp.fBold

sprmCFItalic
chp.fItalic

sprmCFStrike
chp.fStrike

sprmCFOutline
chp.fOutline

sprmCFShadow
chp.fShadow

sprmCFSmallCaps
chp.fSmallCaps

sprmCFCaps
chp.fCaps

sprmCFVanish
chp.fVanish

sprmCFtc
chp.ftc

sprmCKul
chp.kul

sprmCDxaSpace
chp.dxaSpace

sprmCLid
chp.lid

sprmCIco
chp.ico

sprmCHps
chp.hps

sprmCHpsPos
chp.hpsPos

sprmCIss
chp.iss

sprmCFData
chp.fData

sprmCFObj
chp.fObj

sprmCFOle2
chp.fOle2

sprmCYsri
chp.ysri

sprmCHpsKern
chp.hpsKern

sprmCChse
chp.chse, chp.fChsDiff

chpx.cb is equal to (1 + sizeof(chpx.grpprl)) .

Date and Time (internal date format) (DTTMxe "DTTM")

b10
b16
field
type
size
bitfield
comment

0
0
mint
unsigned
:6
003F
minutes (0-59)

hr
unsigned
:5
07C0
hours (0-23)

dom
unsigned
:5
F800
days of month (1-31)

2
2
mon
unsigned
:4
000F
months (1-12)

yr
unsigned
:9
1FF0
years (1900-2411)-1900

wdy
unsigned
:3
E000
weekday, Sunday=0, Monday=1, Tuesday=2, Wednesday=3, Thursday=4, Friday=5, Saturday=6

Drop Cap Specifier(DCSxe "DCS")

b10
b16
field
type
size
bitfield
default value
comment

0
0
fdct
int
:3
0007
0
drop cap type
0
no drop cap
1
 normal drop cap
2
drop cap in margin

int
:5
00F8
0
count of lines to drop

1
1

int
:8

reserved

Document Properties (DOPxe "DOP")

b10
b16
field
type
size
bitfield
default value
comment

0
0
fFacingPages
int
:1
0001
0
1 when facing pages should be printed

fWidowControl
int
:1
0002
1
1 when widow control is in effect. 0 when widow control disabled.

fPMHMainDoc
int
:1
0004
0
1 when doc is a main doc for Print Merge Helper, 0 when not; default=0

grfSuppression
int
:2
0018
0
Default line suppression storage; 0= form letter line suppression; 1= no line suppression; default=0

fpc
int
:2
0060
1
footnote position code
0
print as endnotes
1
print at bottom of page
2
print immediately
beneath text

int
:1
0080
0
unused

1
1
grpfIhdt
int
:8
FF00
0
specification of document headers and footers. See explanation under Headers and Footers topic.

2
2
rncFtn
int
:2
0003
0
restart index for footnotes
0
don’t restart note
numbering
1
restart for each section
2
restart for each page

nFtn
int
:14
FFFC
1
initial footnote number for document

4
4
fOutlineDirtySave
int
:1
0001

when 1, indicates that information in the hplcpad should be refreshed since outline has been dirtied

int
:7
00FE

reserved

5

5
fOnlyMacPics
int
:1
0100

when 1, Word believes all pictures recorded in the document were created on a Macintosh

fOnlyWinPics
int
:1
0200

when 1, Word believes all pictures recorded in the document were created in Windows

fLabelDoc
int
:1
0400

when 1, document was created as a print merge labels document

fHyphCapitals
int
:1
0800

when 1, Word is allowed to hyphenate words that are capitalized. When 0, capitalized may not be hyphenated

fAutoHyphen
int
:1
1000

when 1, Word will hyphenate newly typed text as a background task

fFormNoFields
int
:1
2000

fLinkStyles
int
:1
4000

when 1, Word will merge styles from its template

fRevMarking
int
:1
8000

when 1, Word will mark revisions as the document is edited

6
6
fBackup
int
:1
0001

always make backup when document saved when 1.

fExactCWords
int
:1
0002

fPagHidden
int
:1
0004

fPagResults
int
:1
0008

fLockAtn
int
:1
0010

when 1, annotations are locked for editing

fMirrorMargins
int
:1
0020

swap margins on left/right pages when 1.

fReadOnlyRecommended
int
:1
0040
user has recommended that this doc be opened read-only when 1

fDfltTrueType
int
:1
0080

when 1, use TrueType fonts by default (flag obeyed only when doc was created by WinWord 2.x)

7
7
fPagSuppressTopSpacing
int
:1
0100
when 1, file created with SUPPRESSTOPSPACING=YES in win.ini. (flag obeyed only when doc was created by WinWord 2.x).

fProtEnabled
int
:1
0200

when 1, document is protected from edit operations

fDispFormFldSel
int
:1
0400

when 1, restrict selections to occur only within form fields

fRMView
int
:1
0800

when 1, show revision markings on screen

fRMPrint
int
:1
1000

when 1, print revision marks when document is printed

fWriteReservation
int
:1
2000

fLockRev
int
:1
4000

when 1, the current revision marking state is locked

fEmbedFonts
int
:1
8000

when 1, document contains embedded True Type fonts

8
8
copts.fNoTabForInd int
:1
0001

compatability option: when 1, don’t add automatic tab stops for hanging indent

copts.fNoSpaceRaiseLower
:1
0002

compatability option: when 1, don’t add extra space for raised or lowered characters

copts.fSupressSpbfAfterPageBreak: :1 0004

compatability option: when 1, supress the paragraph Space Before and Space After options after a page break

copts.fWrapTrailSpaces
:1
0008

compatability option: when 1, wrap trailing spaces at the end of a line to the next line

copts.fMapPrintTextColor
:1
0010

compatability option: when 1, print colors as black on non-color printers

copts.fNoColumnBalance
:1
0020

compatability option: when 1, don’t balance columns for Continuous Section starts

copts.fConvMailMergeEsc
:1
0040

copts.fSupressTopSpacing
:1
0080

compatability option: when 1, supress extra line spacing at top of page

copts.fOrigWordTableRules
:1
0100

compatability option: when 1, combine table borders like Word 5.x for the Macintosh

copts.fTransparentMetafiles
:1
0200

compatability option: when 1, don’t blank area between metafile pictures

copts.fShowBreaksInFrames
:1
0400

compatability option: when 1, show hard page or column breaks in frames

copts.fSwapBordersFacingPgs :1
0800

compatability option: when 1, swap left and right pages on odd facing pages

F000

reserved

10
A
dxaTab
uns

720 twips
default tab width

12
C
wSpare
uns

14
E
dxaHotZ
uns

width of hyphenation hot zone measured in twips

16
10
cConsecHypLim
uns

number of lines allowed to have consecutive hyphens

18
12
wSpare2
uns

reserved

20
14
dttmCreated
DTTM

date and time document was created

24
18
dttmRevised
DTTM

date and time document was last revised

28
1C
dttmLastPrint
DTTM

date and time document was last printed

32
20
nRevision
int

number of times document has been revised since its creation

34
22
tmEdited
long

time document was last edited

38
26
cWords
long

count of words tallied by last Word Count execution

42
2A
cCh
long

count of characters tallied by last Word Count execution

46
2E
cPg
int

count of pages tallied by last Word Count execution

48
30
cParas
long

count of paragraphs tallied by last Word Count execution

52
34
rncEdn
int
:2
0003

restart endnote number code
0
don’t restart endnote
numbering
1
restart for each section
2
restart for each page

nEdn
int
:14
FFFC

beginning endnote number

54
36
epc
int
:2
0003

endnote position code
0
display endnotes at end of
section
3
display endnotes at end of

document

nfcFtnRef
int
:4
003C

number format code for auto footnotes
0
Arabic
1
Upper case Roman
2
Lower case Roman
3
Upper case Letter
4
Lower case Letter

nfcEdnRef
int
:4
03C0

number format code for auto endnotes
0
Arabic
1
Upper case Roman
2
Lower case Roman
3
Upper case Letter
4
Lower case Letter

55
37
fPrintFormData
int
:1
0400

only print data inside of form fields

fSaveFormData
int
:1
0800

only save document data that is inside of a form field.

fShadeFormData
int
: 1
1000

shade form fields

:2
6000

reserved

fWCFtnEdn
int
:1
8000

when 1, include footnotes and endnotes in word count

56
38
cLines
long

count of lines tallied by last Word Count operation

60
3C
cWordsFtnEnd
long

count of words in footnotes and endnotes tallied by last Word Count operation

64
40
cChFtnEdn
long

count of characters in footnotes and endnotes tallied by last Word Count operation

68
44
cPgFtnEdn
short

count of pages in footnotes and endnotes tallied by last Word Count operation

70

46
cParasFtnEdn
long

count of paragraphs in footnotes and endnotes tallied by last Word Count operation

74

4A
cLinesFtnEdn
long

count of paragraphs in footnotes and endnotes tallied by last Word Count operation

78
4E
lKeyProtDoc
long

document protection password key, only valid if dop.fProtEnabled, dop.fLockAtn or dop.fLockRev are 1.

82
52
wvkSaved
int
:3
0007

document view kind
0
Normal view
1
Outline view
2
Page View

wScaleSaved
int
:9
0FF8

zkSaved
int
:2
3000

cbDOP is 84.

cwDOP is 42.

Drawing Object (Word) (DOxe "FIB")

b10
b16
field
type
size
bitfield
comment

0
0
fc
long

FC pointing to drawing object data

0
0
dok
uns short

Drawn Object Kind, currently this is always 0

2
2
cb
short

size (count of bytes) of the entire DO

4
4
bx
uns char

x position relative to anchor CP

5
5
by
uns char

y position relative to anchor CP

6
6
dhgt
short

height of DO

8
8
fAnchorLock
uns short :1
0001
1 if the DO anchor is locked

10
a
rgdp

variable length array of drawing primitives

Drawing Primitive Header (Word) (DPHEADxe "FIB")

b10
b16
field
type
size
bitfield
comment

0
0
dpk
uns short

Drawn Primitive Kind REVIEW davebu

0x0000 = start of grouping of primitives

0x0001 = line

0x0002 = textbox

0x0003 = rectangle

0x0004 = arc

0x0005 = elipse

0x0006 = polyline

0x0007 = callout textbox

0x0008 = end of grouping of primitives

0x0009 = sample primitve holding default values

2
2
cb
short

size (count of bytes) of this DP

4
4
xa
short

These 2 points describe the rectangle

6
6
ya
short

enclosing this DP relative to the origin of

8
8
dxa
short

the DO

10
a
dya
short

Drawing Primitive (Word) (DPxe "FIB")

b10
b16
field
type
size
bitfield
comment

0
0
dphead
DPHEAD
12

Common header for a drawing primitive

DP data for a line

12
c
xaStart
short

starting point for line

14
e
yaStart
short

12
c
xaEnd
short

ending point for line

14
e
yaEnd
short

16
10
lnpc
long

LiNe Property Color -- RGB color value

20
14
lnpw
short

line property weight in twips

22
16
lnps
short

line property style

0 Solid

1 Dashed

2 Dotted

3 Dash Dot

4 Dash Dot Dot

5 Hollow

24
18
eppsStart
uns short
:2
0003
Start EndPoint Property Style

0 None

1 Hollow

2 Filled

eppwStart
uns short
:2
000c
Start EndPoint Property Weight

epplStart
uns short
:2
0030
Start EndPoint Property length

26
1a
eppsEnd
uns short
:2
0003
End EndPoint Property Style

eppwEnd
uns short
:2
000c
End EndPoint Property Weight

epplEnd
uns short
:2
0030
End EndPoint Property length

28
1c
shdwpi
short

Shadow Property Intensity
 REVIEW davebu

30
1e
xaOffset
short

x offset of shadow

32
20
yaOffset
short

y offset of shadow

DP data for a textbox (DPTXBX)

12
c
lnpc
long

LiNe Property Color -- RGB color value

16
10
lnpw
short

line property weight in twips

18
12
lnps
short

line property style

See description above in the DP data for a line

20
14
dlpcFg
long

FiLl Property Color ForeGround -- RGB color value

24
18
dlpcBg
long

FiLl Property Color BackGround -- RGB color value

28
1c
flpp
short

FiLl Property Pattern

REVIEW davebu

30
1e
shdwpi
short

Shadow Property Intensity

32
20
xaOffset
short

x offset of shadow

34
22
yaOffset
short

y offset of shadow

36
24
fRoundCorners
uns short
:1
0001
1 if the textbox has rounded corners

36
24
zaShape
uns short
:15
000e
REVIEW davebu

38
26
dzaInternalMargin
short

REVIEW davebu

DP data for a rectangle

12
c
lnpc
long

LiNe Property Color -- RGB color value

16
10
lnpw
short

line property weight in twips

18
12
lnps
short

line property style

See description above in the DP data for a line

20
14
dlpcFg
long

FiLl Property Color ForeGround -- RGB color value

24
18
dlpcBg
long

FiLl Property Color BackGround -- RGB color value

28
1c
flpp
short

FiLl Property Pattern

REVIEW davebu

30
1e
shdwpi
short

Shadow Property Intensity

32
20
xaOffset
short

x offset of shadow

34
22
yaOffset
short

y offset of shadow

36
24
fRoundCorners
uns short
:1
0001
1 if the textbox has rounded corners

36
24
zaShape
uns short
:15
000e
REVIEW davebu

DP data for an arc

12
c
lnpc
long

LiNe Property Color -- RGB color value

16
10
lnpw
short

line property weight in twips

18
12
lnps
short

line property style

See description above in the DP data for a line

20
14
dlpcFg
long

FiLl Property Color ForeGround -- RGB color value

24
18
dlpcBg
long

FiLl Property Color BackGround -- RGB color value

28
1c
flpp
short

FiLl Property Pattern

REVIEW davebu

30
1e
shdwpi
short

Shadow Property Intensity

32
20
xaOffset
short

x offset of shadow

34
22
yaOffset
short

y offset of shadow

36
24
fLeft
uns short
:8
00ff
REVIEW davebu

36
24
fUp
uns short
:8
ff00
REVIEW davebu

DP data for an elipse

12
c
lnpc
long

LiNe Property Color -- RGB color value

16
10
lnpw
short

line property weight in twips

18
12
lnps
short

line property style

See description above in the DP data for a line

20
14
dlpcFg
long

FiLl Property Color ForeGround -- RGB color value

24
18
dlpcBg
long

FiLl Property Color BackGround -- RGB color value

28
1c
flpp
short

FiLl Property Pattern

REVIEW davebu

30
1e
shdwpi
short

Shadow Property Intensity

32
20
xaOffset
short

x offset of shadow

34
22
yaOffset
short

y offset of shadow

DP data for a polyline (DPPOLYLINE)

12
c
lnpc
long

LiNe Property Color -- RGB color value

16
10
lnpw
short

line property weight in twips

18
12
lnps
short

line property style

See description above in the DP data for a line

20
14
dlpcFg
long

FiLl Property Color ForeGround -- RGB color value

24
18
dlpcBg
long

FiLl Property Color BackGround -- RGB color value

28
1c
flpp
short

FiLl Property Pattern

REVIEW davebu

30
1e
eppsStart
uns short
:2
0003
Start EndPoint Property Style

0 None

1 Hollow

2 Filled

eppwStart
uns short
:2
000c
Start EndPoint Property Weight

epplStart
uns short
:2
0030
Start EndPoint Property length

32
20
eppsEnd
uns short
:2
0003
End EndPoint Property Style

eppwEnd
uns short
:2
000c
End EndPoint Property Weight

epplEnd
uns short
:2
0030
End EndPoint Property length

34
22
shdwpi
short

Shadow Property Intensity

36
24
xaOffset
short

x offset of shadow

38
26
yaOffset
short

y offset of shadow

40
28
fPolygon
uns short
:1
0001
1 if this is a polygon

40
28
cpt
uns short
:15
00fe
count of points

42
2a
xaFirst
short

These are the endpoints of the first line.

44
2c
yaFirst
short

46
2e
xaEnd
short

48
30
yaEnd
short

50
32
rgpta[]
short

An array of xa,ya pairs for the remaining points

DP data for a callout textbox

12
c

REVIEW davebu flags

14
e
dzaOffset
short

REVIEW davebu

16
10
dzaDescent
short

REVIEW davebu

18
12
dzaLength
short

REVIEW davebu

20
14
dpheadTxbx
DPHEAD

DPHEAD for a textbox

32
20
dptxbx
DP

DP for a textbox

60
4c
dpheadPolyLine
DPHEAD

DPHEAD for a Polyline

72
48
dpPolyLine
DP

DP for a polyline

DP data for a sample primitive holding default values

12
c
lnpc
long

LiNe Property Color -- RGB color value

16
10
lnpw
short

line property weight in twips

18
12
lnps
short

line property style

See description above in the DP data for a line

20
14
dlpcFg
long

FiLl Property Color ForeGround -- RGB color value

24
18
dlpcBg
long

FiLl Property Color BackGround -- RGB color value

28
1c
flpp
short

FiLl Property Pattern

REVIEW davebu

30
1e
eppsStart
uns short
:2
0003
Start EndPoint Property Style

0 None

1 Hollow

2 Filled

eppwStart
uns short
:2
000c
Start EndPoint Property Weight

epplStart
uns short
:2
0030
Start EndPoint Property length

32
20
eppsEnd
uns short
:2
0003
End EndPoint Property Style

eppwEnd
uns short
:2
000c
End EndPoint Property Weight

epplEnd
uns short
:2
0030
End EndPoint Property length

34
22
shdwpi
short

Shadow Property Intensity

36
24
xaOffset
short

x offset of shadow

38
26
yaOffset
short

y offset of shadow

42
2a
dzaOffset
short

REVIEW davebu

44
2c
dzaDescent
short

REVIEW davebu

46
2e
dzaLength
short

REVIEW davebu

48
30
fRoundCorners
uns short
:1
0001
1 if the textbox has rounded corners

48
30
zaShape
uns short
:15
000fe
REVIEW davebu

50
32
dzaInternalMargin
short

REVIEW davebu

Embedded Object Properties (_OBJHEADERxe "Embedded Object"

xe "_OBJHEADER")

b10
b16
field
type
size
bitfield
comments

0
0
lcb
long

length of object (including this header)

4
4
cbHeader
int

length of this header (for future use)

6
6
icf
int

index to clipboard format of object

Field Descriptor (FLDxe "FLD")

b10
b16
field
type
size
bitfield
comments

0
0
ch
byte

type of field boundary the FLDdescribes.

19
field begin mark

20
field separator

21
field end mark

 variant used when fld.ch == 19 (field begin mark)

1
1
flt
byte

field type
see flt table below

 variant used when fld.ch == 21 (field end mark)

1
1
fDiffer
int
:1
01
ignored for saved file

fZombieEmbed
int
:1
02
==1, when result still believes this field is an EMBED or LINK field

fResultDirty
int
: 1
04
== 1, when user has edited or formatted the result. ==0 otherwise

fResultEdited
int
:1
08
==1, when user has inserted text into or deleted text from the result.

fLocked
int
:1
10
==1, when field is locked from recalc

fPrivateResult
int
:1
20
==1, whenever the result of the field is never to be shown.

fNested
int
: 1
40
==1, when field is nested within another field

fHasSep
int
:1
80
==1, when field has a field separator

flt value
field type

1
unknown keyword

2
possible bookmark (syntax matches bookmark name)

3
bookmark reference

4
index entry

5
footnote reference

6
Set command (for Print Merge)

7
If command (for Print Merge)

8
create index

9
table of contents entry

10
Style reference

11
document reference

12
sequence mark

13
create table-of-contents

14
quote Info variable

15
quote Titlevariable

16
quote Subjectvariable

17
quote Author variable

18
quote Keywords variable

19
quote Comments variable

20
quote Last Revised By variable

21
quote Creation Date variable

22
quote Revision Date variable

23
quote Print Date variable

24
quote Revision Number variable

25
quote Edit Time variable

26
quote Number of Pages variable

27
quote Number of Words variable

28
quote Number of Characters variable

29
quote File Name variable

30
quote Document Template Name variable

31
quote Current Date variable

32
quote Current Time variable

33
quote Current Page variable

34
evaluate expression

35
insert literal text

36
Include command (Print Merge)

37
page reference

38
Ask command (Print Merge)

39
Fillin command to display prompt (Print Merge)

40
Data command (Print Merge)

41
Next command (Print Merge)

42
NextIf command (Print Merge)

43
SkipIf (Print Merge)

44
inserts number of current Print Merge record

45
DDE reference

46
DDE automatic reference

47
Inserts Glossary Entry

48
sends characters to printer without translation

49
Formula definition

50
Goto Button

51
Macro Button

52
insert auto numbering field in outline format

53
insert auto numbering field in legal format

54
insert auto numbering field in arabic number format

55
reads a TIFF file

56
Link

57
Symbol

58
Embedded Object

59
Merge fields

60
User Name

61
User Initial

62
User Address

63
Bar code

65
Section

66
Section pages

67
Include Picture

68
Include Text

69
File Size

70
Form Text Box

71
Form Check Box

72
Note Reference

73
Create Table of Authorities

74
Mark Table of Authorities Entry

75
Merge record sequence number

76
Macro

77
Private

78
Insert Database

79
Autotext

80
Compare two values

81
Plug-in module private

82
Subscriber

83
Form List Box

84
Advance

File Drawn Object Address (Word) (FDOAxe "FDOA")

b10
b16
field
type
size
bitfield
comment

0
0
fc
long

FC pointing to drawing object data

4
4
ctxbx
short

count of textboxes in the drawing object

Font Family Name (FFNxe "FFN")

b10
b16
field
type
size
bitfield
comment

0
0
cbFfnM1
uns char

total length of FFN - 1.

1
1
prg
uns char
:2
03
pitch request

fTrueType
uns char
:1
04
when 1, font is a TrueType font

uns char
:1
08
reserved

ff
uns char
:3
70
font family id

uns char :1
80
reserved

2
2
wWeight
short

base weight of font

4
4
chs
uns char

character set identifier

5
5
ibszAlt
uns char

index into ffn.szFfn to the name of the alternate font

6
6
szFfn
char[]

zero terminated string that records name of font. Possibly followed by a second sz which records the name of an alternate font to use if the first named font does not exist on this system. Maximal size of szFfn is 65 characters.

File Information Block (Windows Word) (FIBxe "FIB")

b10
b16
field
type
size
bitfield
comment

0
0
wIdent
int

magic number

2
2
nFib
int

FIB version written

4
4
nProduct
int

product version written by

6
6
lid
int

language stamp---localized version;
In pre-WinWord2.0 files this value was the nLocale. If value is < 999, then it is the nLocale, otherwise it is the lid.

8
8
pnNext
PN

10
A
fDot
uns
:1
0001

fGlsy
uns
:1
0002

fComplex
uns
:1
0004
when 1, file is in complex, fast-saved format.

fHasPic
uns
:1
0008
file contains 1 or more pictures

cQuickSaves
uns
:4
00F0
count of times file was quicksaved

11
B
fEncrypted
uns
:1
0100
1 if file is encrypted, 0 if not

uns
:1
0200
reserved

fReadOnlyRecommended uns
:1
0400
=1 when user has recommended that file be read read-only

fWriteReservation
uns
:1
0800
=1, when file owner has made the file write reserved

fExtChar
uns
:1
1000
=1, when using extended character set in file

*
uns
:3
E000
unused

12
C
nFibBack
uns

14
E
lKey
long

file encrypted key, only valid if fEncrypted.

18
12
envr
unsigned char

environment in which file was created
0
created by Win Word
1
created by Mac Word

19
13

reserved

20
14
chse
unsigned short

default extended character set id for text in document stream. (overidden by chp.chse)
0
by default characters in doc stream
should be interpreted using the
ANSI character set used by
Windows
256
characters in doc stream should be

interpreted using the Macintosh

character set.

22
16
chseTables
uns

default extended character set id for text in internal data structures
0
by default characters stored in internal
data structures should be
interpreted using the ANSI
character set used by Windows
256
characters stored in internal
data structures should be

interpreted using the Macintosh

character set.

24
18
fcMin
FC

file offset of first character of text. In non-complex files a CP can be transformed into an FC by the following transformation:
fc = cp + fib.fcMin.

28
1C
fcMac
FC

file offset of last character of text in document text stream + 1

32
20
cbMac
FC

file offset of last byte written to file + 1.

36
24
fcSpare0
FC

reserved

40
28
fcSpare1
FC

reserved

44
2C
fcSpare2
FC

reserved

48
30
fcSpare3
FC

reserved

52
34
ccpText
CP

length of main document text stream

56
38
ccpFtn
CP

length of footnote subdocument text stream

60
3C
ccpHdd
CP

length of header subdocument text stream

64
40
ccpMcr
CP

length of macro subdocument text stream

68
44
ccpAtn
CP

length of annotation subdocument text stream

72
48
ccpEdn
CP

length of endnote subdocument text stream

76
4C
ccpTxbx
CP

length of textbox subdocument text stream

80
50
ccpHdrTxbx
CP

length of header textbox subdocument text stream
Note: when ccpFtn == 0 and ccpHdr == 0 and ccpMcr == 0 and ccpAtn == 0 and ccpEdn ==0 and ccpTxbx == 0 and ccpHdrTxbx == 0, then fib.fcMac = fib.fcMin+ fib.ccpText. If either ccpFtn != 0 or ccpHdd != 0 or ccpMcr != 0 or ccpAtn != 0 or ccpEdn !=0 or ccpTxbx != 0 or ccpHdrTxbx == 0, then fib.fcMac = fib.fcMin + fib.ccpText + fib.ccpFtn + fib.ccpHdd + fib.ccpMcr + fib.ccpAtn + fib.ccpEdn + fib.ccpTxbx + fib.ccpHdrTxbx + 1. The single character stored beginning at file position fib.fcMac - 1 must always be a CR character (ASCII 13).

84
54
ccpSpare2
CP

reserved

88
58
fcStshfOrig
FC

file offset of original allocation for STSH in file. During fast save Word will attempt to reuse this allocation if STSH is small enough to fit.

92
5C
lcbStshfOrig
long

count of bytes of original STSH allocation

96
60
fcStshf
FC

file offset of STSH in file.

100
64
lcbStshf
long

count of bytes of current STSH allocation

104
68
fcPlcffndRef
FC

file offset of footnote reference PLC. CPs in PLC are relative to main document text stream and give location of footnote references. The structure stored in this plc, called the FRD (footnote reference descriptor) is two byte long.

108
6C
lcbPlcffndRef
long

count of bytes of footnote reference PLC
== 0 if no footnotes defined in document.

112
70
fcPlcffndTxt
FC

file offset of footnote text PLC. CPs in PLC are relative to footnote subdocument text stream and give location of beginnings of footnote text for correspondings references recorded in plcffndRef. No structure is stored in this plc. There will just be n+1 FC entries in this PLC when there are n footnotes

116
74
lcbPlcffndTxt
long

count of bytes of footnote text PLC.
== 0 if no footnotes defined in document

120
78
fcPlcfandRef
FC

file offset of annotation reference PLC. The CPs recorded in this PLC give the offset of annotation references in the main document.

124
7C
lcbPlcfandRef
long

count of bytes of annotation reference PLC.

128
80
fcPlcfandTxt
FC

file offset of annotation text PLC. The Cps recorded in this PLC give the offset of the annotation text in the annotation sub document corresponding to the references stored in the plcfandRef. There is a 1 to 1 correspondence between entries recorded in the plcfandTxt and the plcfandRef.

132
84
lcbPlcfandTxt
long

count of bytes of the annotation text PLC

136
88
fcPlcfsed
FC

file offset of section descriptor PLC. CPs in PLC are relative to main document. The length of the SED is 12 bytes.

140
8C
lcbPlcfsed
long

count of bytes of section descriptor PLC.

144
90
fcPlcfpad
FC

file offset of paragraph descriptor PLC for main document which is used by Word’s Outline view. CPs in PLC are relative to main document. The length of the PGD is 8 bytes.

148
94
lcbPlcfpad
long

count of bytes of paragraph descriptor PLC. ==0 if file was never viewed in Outline view. Should not be written by third party creators of Word files.

152
98
fcPlcfphe
FC

file offset of PLC of paragraph heights. CPs in PLC are relative to main document text stream. Only written for fies in complex format. Should not be written by third party creators of Word files. The PHE is 6 bytes long.

156
9C
lcbPlcfphe
long

count of bytes of paragraph height PLC. ==0 when file is non-complex.

160
A0
fcSttbfglsy
FC

file offset of glossary string table. This table consists of pascal style strings (strings stored prefixed with a length byte) concatenated one after another.

164
A4
lcbSttbfglsy
long

count of bytes of glossary string table.
== 0 for non-glossary documents.
!=0 for glossary documents.

168
A8
fcPlcfglsy
FC

file offset of glossary PLC. CPs in PLC are relative to main document and mark the beginnings of glossary entries and are in 1-1 correspondence with entries of sttbfglsy. No structure is stored in this PLC. There will be n+1 FC entries in this PLC when there are n glossary entries.

172
AC
lcbPlcfglsy
long

count of bytes of glossary PLC.
== 0 for non-glossary documents.
!=0 for glossary documents.

176
B0
fcPlcfhdd
FC

byte offset of header PLC. CPs are relative to header subdocument and mark the beginnings of individual headers in the header subdoc. No structure is stored in this PLC. There will be n+1 FC entries in this PLC when there are n headers stored for the document.

180
B4
lcbPlcfhdd
long

count of bytes of header PLC.
== 0 if document contains no headers

184
B8
fcPlcfbteChpx
FC

file offset of character property bin table.PLC. FCs in PLC are file offsets. Describes text of main document and all subdocuments. The BTE is 2 bytes long.

188
BC
lcbPlcfbteChpx
long

count of bytes of character property bin table PLC.

192
C0
fcPlcfbtePapx
FC

file offset of paragraph property bin table.PLC. FCs in PLC are file offsets. Describes text of main document and all subdocuments. The BTE is 2 bytes long.

196
C4
lcbPlcfbtePapx
long

count of bytes of paragraph property bin table PLC.

200
C8
fcPlcfsea
FC

file offset of PLC reserved for private use. The SEA is 6 bytes long.

204
CC
lcbPlcfsea
uns

count of bytes of private use PLC.

208
DO
fcSttbfffn
FC

file offset of font information STTBF. The nth entry in the STTBF describes the font that will be displayed when the chp.ftc for text is equal to n. See the FFN file structure definition.

212
D4
lcbSttbfffn
long

count of bytes in sttbfffn.

216
D8
fcPlcffldMom
FC

offset in doc stream to the PLC of field positions in the main document. The Cps point to the beginning CP of a field, the CP of field separator character inside a field and the ending CP of the field. A field may be nested within another field. 20 levels of field nesting are allowed.

220
DC
lcbPlcffldMom
long

224
E0
fcPlcffldHdr
FC

offset in doc stream to the PLC of field positions in the header subdocument.

228
E4
lcbPlcffldHdr
long

232
E8
fcPlcffldFtn
FC

offset in doc stream to the PLC of field positions in the footnote subdocument.

236
EC
lcbPlcffldFtn
long

240
F0
fcPlcffldAtn
FC

offset in doc stream to the PLC of field positions in the annotation subdocument.

244
F4
lcbPlcffldAtn
long

248
F8
fcPlcffldMcr
FC

offset in doc stream to the PLC of field positions in the macro subdocument.

252
FC
lcbPlcffldMcr
long

256
100
fcSttbfbkmk
FC

offset in document stream of the STTBF that records bookmark names in the main document

260
104
lcbSttbfbkmk
long

264
108
fcPlcfbkf
FC

offset in document stream of the PLCF that records the beginning CP offsets of bookmarks in the main document. See BKF structure definition

268
10C
lcbPlcfbkf
long

272
110
fcPlcfbkl
FC

offset in document stream of the PLCF that records the ending CP offsets of bookmarks recorded in the main document. See the BKL structure definition.

276
114
lcbPlcfbkl
long

280
118
fcCmds
FC

284
11C
lcbCmds
long

288
120
fcPlcmcr
FC

292
124
lcbPlcmcr
long

296
128
fcSttbfmcr
FC

300
12C
lcbSttbfmcr
long

304
130
fcPrDrvr
FC

file offset of the printer driver information (names of drivers, port etc...)

308
134
lcbPrDrvr
long

count of bytes of the printer driver information (names of drivers, port etc...)

312
138
fcPrEnvPort
FC

file offset of the print environment in portrait mode.

316
13C
lcbPrEnvPort
long

count of bytes of the print environment in portrait mode.

320
140
fcPrEnvLand
FC

file offset of the print environment in landscape mode.

324
144
lcbPrEnvLand
long

count of bytes of the print environment in landscape mode.

328
148
fcWss
FC

file offset of Window Save State data structure. WSS contains dimensions of document's main text window and the last selection made by Word user.

332
14C
lcbWss
long

count of bytes of WSS. ==0 if unable to store the window state. Should not be written by third party creators of Word files.

336
150
fcDop
FC

file offset of document property data structure.

340
154
lcbDop
long

count of bytes of document properties.

344
158
fcSttbfAssoc
FC

offset to STTBF of associated strings. The strings in this table specify document summary info and the paths to special documents related to this document. See documentation of the STTBFASSOC.

348
15C
cbSttbfAssoc
long

352
160
fcClx
FC

file of offset of beginning of information for complex files. Consists of an encoding of all of the prms quoted by the document followed by the plcpcd (piece table) for the document.

356
164
lcbClx
long

count of bytes of complex file information.
== 0 if file is non-complex.

360
168
fcPlcfpgdFtn
FC

file offset of page descriptor PLC for footnote subdocument. CPs in PLC are relative to footnote subdocument. Should not be written by third party creators of Word files.

364
16C
lcbPlcfpgdFtn
long

count of bytes of page descriptor PLC for footnote subdocument.
==0 if document has not been paginated. The length of the PGD is 8 bytes.

368
170
fcAutosaveSource
FC

file offset of the name of the original file. fcAutosaveSource and cbAutosaveSource should both be 0 if autosave is off.

372
174
lcbAutosaveSource
long

count of bytes of the name of the original file.

376
178
fcGrpStAtnOwners
FC

group of strings recording the names of the owners of annotations stored in the document

380
17C
lcbGrpStAtnOwners long

count of bytes of the group of strings

384

180
fcSttbfAtnbkmk
FC

file offset of the sttbf that records names of bookmarks in the annotation subdocument

388
184
lcbSttbfAtnbkmk
long

length in bytes of the sttbf that records names of bookmarks in the annotation subdocument

392

188
wSpare4Fib

394
18A
pnChpFirst
PN

the page number of the lowest numbered page in the document that records CHPX FKP information

396
18C
pnPapFirst
PN

the page number of the lowest numbered page in the document that records PAPX FKP information

398
18E
cpnBteChp
PN

count of CHPX FKPs recorded in file. In non-complex files if the number of entries in the plcfbteChpx is less than this, the plcfbteChpx is incomplete.

400
190
cpnBtePap
PN

count of PAPX FKPs recorded in file. In non-complex files if the number of entries in the plcfbtePapx is less than this, the plcfbtePapx is incomplete.

402

192
fcPlcfdoaMom
FC

file offset of the FDOA (drawn object) PLC for main document.
==0 if document has no drawn objects. The length of the FDOA is 6 bytes.

406

196
lcbPlcfdoaMom
long

length in bytes of the FDOA PLC of the main document

410

19A
fcPlcfdoaHdr
FC

file offset of the FDOA (drawn object) PLC for the header document.
==0 if document has no drawn objects. The length of the FDOA is 6 bytes.

414

19E
lcbPlcfdoaHdr
long

length in bytes of the FDOA PLC of the header document

418

1A2
fcUnused1
FC

422

1A6
lcbUnused1
long

426

1AA
fcUnused2
FC

430

1AE
lcbUnused2
long

434

1B2
fcPlcfAtnbkf
FC

file offset of BKF (bookmark first) PLC of the annotation subdocument

438

1B6
lcbPlcfAtnbkf
long

length in bytes of BKF (bookmark first) PLC of the annotation subdocument

442

1BA
fcPlcfAtnbkl
FC

file offset of BKL (bookmark last) PLC of the annotation subdocument

446

1BE
lcbPlcfAtnbkl
long

length in bytes of BKL (bookmark first) PLC of the annotation subdocument

450

1C2
fcPms
FC

file offset of PMS (Print Merge State) information block

454

1C6
lcbPMS
long

length in bytes of PMS

458

1CA
fcFormFldSttbf
FC

file offset of form field Sttbf which contains strings used in form field dropdown controls

462

1CE
lcbFormFldSttbf
long

length in bytes of form field Sttbf

466

1D2
fcPlcfendRef
FC

file offset of PlcfendRef which points to endnote references in the main document stream

470

1D6
lcbPlcfendRef
long

474

1DA
fcPlcfendTxt
FC

file offset of PlcfendRef which points to endnote text in the endnote document stream which corresponds with the plcfendRef

478
1DE
lcbPlcfendTxt
long

482

1E2
fcPlcffldEdn
FC

offset to PLCF of field positions in the endnote subdoc

486

1E6
lcbPlcffldEdn
long

490

1EA
fcPlcfpgdEdn
FC

offset to PLCF of page boundaries in the endnote subdoc.

494

1EE
lcbPlcfpgdEdn
long

498

1F2
fcUnused3
FC

502

1F6
lcbUnused3
long

506

1FA
fcSttbfRMark
FC

offset to STTBF that records the author abbreviations for authors who have made revisions in the document.

510

1FE
lcbSttbfRMark
long

514

202
fcSttbfCaption
FC

offset to STTBF that records caption titles used in the document.

518

206
lcbSttbfCaption
long

522

20A
fcAutoCaption
FC

526

20E
lcbAutoCaption
long

530

212
fcPlcfwkb
FC

offset to PLCF that describes the boundaries of contributing documents in a master document

534

216
lcbPlcfwkb
long

538

21A
fcUnused4
FC

542

21E
lcbUnused4
long

546

222
fcPlcftxbxTxt
FC

offset in doc stream of PLCF that records the beginning CP in the text box subdoc of the text of individual text box entries

550

226
lcbPlcftxbxTxt
long

554

22A
fcPlcffldTxbx
FC

offset in doc stream of the PLCF that records field boundaries recorded in the textbox subdoc.

558

22E
lcbPlcffldTxbx
long

562

232
fcPlcfHdrtxbxTxt
FC

offset in doc stream of PLCF that records the beginning CP in the header text box subdoc of the text of individual header text box entries

566

236
lcbPlcfHdrtxbxTxt
long

570

23A
fcPlcffldHdrTxbx
FC

offset in doc stream of the PLCF that records field boundaries recorded in the header textbox subdoc.

574

23E
lcbPlcffldHdrTxbx
long

578

242
fcStwUser
FC

Macro User storage

582

246
lcbStwUser
long

586

24A
fcSttbttmbd
FC

590

24E
lcbSttbttmbd
long

594

252
fcPlcunused
FC

598

256
lcbUnused
long

602

25A
fcpgdMother.fcPgd
FC

606

25E
fcpgdMother.lcbPgd long

610

262
fcpgdMother.fcBkd
FC

614

266
fcpgdMother.lcbBkd long

616

26A
fcpgdFtn.fcPgd
FC

620

26E
rgfcpgdFtn.lcbPgd
long

624

272
 rgfcpgdFtn.fcBkd
FC

628

276
rgfcpgdFtn.lcbBkd
long

632

27A
fcpgdFtn.fcPgd
FC

636

27E
rgfcpgdFtn.lcbPgd
long

640

282
 rgfcpgdFtn.fcBkd
FC

644

286
rgfcpgdFtn.lcbBkd
long

648

28A
fcSttbfIntlFld
FC

652

28E
lcbSttbfIntlFld
long

656

292
fcRouteSlip
FC

660

296
lcbRouteSlip
long

664

29A
fcSttbSavedBy
FC

668

29E
lcbSttbSavedBy
long

672

2A2
fcSttbFnm
FC

676

2A6
lcbSttbFnm
long

cbFIB is 682.

cwFIB is 341.

Note: If a table does not exist in the file, its cb in the FIB is zero and its fc is equal to that of the following table (the latter equality is irrelevant, as the cb should be used to determine existence of the table).

Formatted Disk Page for CHPXs (CHPX FKP)

offset (base 10)
field
type
size
bitfield
comments

0

rgfc
array of FCs
Each FC is the limit FC of a run of exception text.

4*(fkp.crun+1)
rgb
array of bytes
an array of bytes where each byte is the word offset of a CHPX. If the byte stored is 0, there is no difference between run's character properties and the style's character properties.

5*fkp.crun+4

unused space
As new runs/paragraphs are recorded in the FKP, unused space is reduced by 5 if CHPX is already recorded and is reduced by 5+sizeof(CHPX) if property is not already recorded.

511-sizeof(grpchpx)
grpchpx
array of bytes
grpchpx consists of all of the CHPXs stored in FKP concatenated end to end. Each CHPX is prefixed with a count of bytes which records its length.

511

crun
byte

count of runs for CHPX FKP,
The CHP is never stored in a Word file. It is derived by expanding stored CHPXs.

Formatted Disk Page for PAPXs (PAPX FKP)

offset (base 10)
field
type
size
bitfield
comments

0

rgfc
FC[fkp.crun+1]
Each FC is the limit FC of a paragraph (ie. points to the next character past an end of paragraph mark). There will be fkp.crun+1 recorded in the FKP.

4*(fkp.crun+1)
rgbx
BX[fkp.crun]
an array of the BX data structure. The ith BX entry in the array describes the paragraph beginning at fkp.rgfc[i]. The BX is a seven byte data structure. The first byte of each BX is the word offset of the PAPX recorded for the paragraph corresponding to this BX. .. If the byte stored is 0, this represents a 1 line paragraph 15 pixels high with Normal style (stc == 0) whose column width is 7980 dxas
 The last six bytes of the BX is a PHE structure which stores the current paragraph height for the paragraph corresponding to the BX. If a plcfphe has an entry that maps to the FC for this paragraph, that entry’s PHE overides the PHE stored in the FKP.11*fkp.crun+4

unused space
As new runs/paragraphs are recorded in the FKP, unused space is reduced by 11 if CHPX/PAPX is already recorded and is reduced by 11+sizeof(PAPX) if property is not already recorded.

511-sizeof(grppapx)
grppapx
array of bytes
grppapx consists of all of the PAPXs stored in FKP concatenated end to end. Each PAPX begins with a count of words which records its length padded to a word boundary.

511

crun
byte

count of paragraphs for PAPX FKP.
The PAP is never stored in a Word file. It is derived by expanding stored PAPXs.

Line Spacing Descriptor (LSPD)

b10
b16
field
type
size
bitfield
comments

0
0
dyaLine
short

see description of sprmPDyaLine for description of the meaning of dyaLine

2
2
fMultLinespace
short

cbLSPD is 4.

see description of sprmPDyaLine in the Sprm Definitions section for description of the meaning of dyaLine and fMultLinespace fields.Outline LiST Data (OLSTxe "OLST")

b10
b16
field
type
size
bitfield
comments

0
0
rganlv[9]
ANLV

an array of 9 ANLV structures describing how heading numbers should be displayed for each of Word’s 9 outline heading levels

144
90
fRestartHdr
uns char

when ==1, restart heading on section break

145

91
fSpareOlst2
uns char

reserved

146

92
fSpareOlst3
uns char

reserved

147

93
fSpareOlst4
uns char

reserved

148

94
rgch[64]
array of 64 chars

text before/after number

cbOLST is 212(decimal), D4(hex).

Page Descriptor (PGD)

b10
b16
field
type
size
bitfield
comments

0
0
*
int
:5
001F

fGhost
int
:2
0060
redefine fEmptyPage and fAllFtn. true when blank page or footnote only page

*
int
:9
FF10

0
0
fContinue
int
:1
0001
1 only when footnote is continued from previous page

fUnk
int
:1
0002
1 when page is dirty (ie. pagination cannot be trusted)

fRight
int
:1
0004
1 when right hand side page

fPgnRestart
int
:1
0008
1 when page number must be reset to 1.

fEmptyPage
int
:1
0010
1 when section break forced page to be empty.

fAllFtn
int
:1
0020
1 when page contains nothing but footnotes

fColOnly
int
:1
0040

fTableBreaks
int
:1
0080

fMarked
int
:1
0100

fColumnBreaks
int
:1
0200

fTableHeader
int
:1
0400

fNewPage
int
:1
0800

bkc
int
:4
F000
section break code

2
2
lnn
uns

line number of first line, -1 if no line numbering

4
4
pgn
uns short

page number as printed

cbPGD (count of bytes of PGD) is 6(decimal),6(hex).

The PHE is a substructure of the PAP and the PAPX FKP and is also stored in the PLCFPHE.

Paragraph Height (PHE)

b10
b16
field
type
size
bitfield
comments

0
0
fSpare
int
:1
0001
reserved

fUnk
int
:1
0002
phe entry is invalid when == 1

fDiffLines
int
:1
0004
when 1, total height of paragraph is known but lines in paragraph have different heights.

*
int
:5
00F8
reserved

clMac
int
:8
FF00
when fDiffLines is 0 is number of lines in paragraph

2
2
dxaCol
int

width of lines in paragraph

4
4
dylLine
int

when fDiffLines is 0, is height of every line in paragraph.in pixels

4
4
dylHeight
uns

when fDiffLines is 1, is the total height in pixels of the paragraph

cbPHE (the count of bytes in a PHE) is 6 (decimal), 6(hex).

If there is no paragraph height information stored for a paragraph, all of the fields in the PHE are set to 0. If a paragraph contains more than 127 lines, the clMac, dylLine variant cannot be used, so fDiffLines must be set to 1 and the total size of the paragraph stored in dylHeight. If a paragraph height is greater than 32767 twips, the height cannot be represented by a PHE so all fields of the PHE must be set to 0.

If a new Windows Word file is created, the PHE of every papx fkp entrycreated to describe the paragraphs of the file should be set to 0. If a Windows Word file is altered in place (a character of the file changed to a new character or a property changed), the paragraph containing the change must have its papx.phe field set to 0.

Paragraph Properties (PAPxe "PAP")

b10
b16
field
type
size
bitfield
comments

0
0
istd
uns char

index to style descriptor . This is an index to an STD in the STSH structure

2
2
jc
uns char

justification code

0
left justify

1
center

2
right justify

3
left and right justify

3
3
fKeep
uns char

keep entire paragraph on one page if possible

4
4
fKeepFollow
uns char

keep paragraph on same page with next paragraph if possible

5
5
fPageBreakBefore
uns char

start this paragraph on new page

6
6
fBrLnAbove
int
:1
0001

fBrLnBelow
int
:1
0002

fUnused
int
:2
0006
reserved

pcVert
int
:2
0030
vertical position code. Specifies coordinate frame to use when paragraphs are absolutely positioned.

0
vertical position coordinates are

relative to margin

1
coordinates are relative to page

2
coortindtes are relative to text. This means: relative to where the next non-APO text would have been placed if this APO did not exist.

pcHorz
int
:2
00C0
horizontal position code. Specifies coordinate frame to use when paragraphs are absolutely positioned.

0
horiz. position coordinates are

relative to column.

1
coordinates are relative to margin

2
coordinates are relative to page

/* the brcp and brcl fields have been superceded by the newly defined brcLeft, brcTop, etc. fields. They remain in the PAP for compatibility with MacWord 3.0 */

7
7
brcp
uns char

rectangle border codes

0
none

1
border above

2
border below

15
box around

16
bar to left of paragraph

8
8
brcl
uns char

border line style

0
single

1
thick

2
double

3
shadow

9
9

reserved

10
A
nLvlAnm
uns char

auto list numbering level (0 = nothing)

11
B
fNoLnn
uns char

no line numbering for this para. (makes this an exception to the section property of line numbering)

12
C
fSideBySide
uns char

when 1, paragraph is a side by side paragraph

14
E
dxaRight
int

indent from right margin (signed).

16
10
dxaLeft
int

indent from left margin (signed)

18
12
dxaLeft1
int

first line indent; signed number relative to dxaLeft

20

14
lspd
LSPD

line spacing descriptor

24
18
dyaBefore
uns

vertical spacing before paragraph (unsigned)

26
1A
dyaAfter
uns

vertical spacing after paragraph (unsigned)

28
1C
phe
PHE

height of current paragraph.

34
22
fAutoHyph
uns char

when 1, text in paragraph may be auto hyphenated

35
23
fWidowControl
uns char

when 1, Word will prevent widowed lines in this paragraph from being placed at the beginning of a page

36
24
fInTable
char

when 1, paragraph is contained in a table row

37
25
fTtp
char

when 1, paragraph consists only of the row mark special character and marks the end of a table row.

38
26
ptap
TAP

used internally by Word

40
28
dxaAbs
int

when positive, is the horizontal distance from the reference frame specified by pap.pcHorz. 0 means paragraph is positioned at the left with respect to the refence frame specified by pcHorz.
Certain negative values have special meaning:

-4
paragraph centered horizontally

within reference frame

-8
paragraph adjusted right within

reference frame

-12 paragraph placed immediately inside

of reference frame

-16 paragraph placed immediately

outside of reference frame

42
2A
dyaAbs
int

when positive, is the vertical distance from the reference frame specified by pap.pcVert. 0 means paragraph's y-position is unconstrained. .
Certain negative values have special meaning:

-4
paragraph is placed at top of reference frame

-8
paragraph is centered vertically

within reference frame

-12 paragraph is placed at bottom of

reference frame.

44
2C
dxaWidth
int

when not == 0, paragraph is constrained to be dxaWidth wide, independent of current margin or column setings.

46
2E
brcTop
BRC
d

specification for border above paragraph

48
30
brcLeft
BRC

specification for border to the left of paragraph

50
32
brcBottom
BRC

specification for border below paragraph

52
34
brcRight
BRC

specification for border to the right of paragraph

54
36
brcBetween
BRC

specification of border to place between conforming paragraphs. Two paragraphs conform when both have borders, their brcLeft and brcRight matches, their widths are the same, they both belong to tables or both do not, and have the same absolute positioning props.

56
38
brcBar
BRC

specification of border to place on outside of text when facing pages are to be displayed.

58
3A
dxaFromText
int

horizontal distance to be maintained between an absolutely positioned paragraph and any non-absolute positioned text

60
3C
dyaFromText
int

vertical distance to be maintained between an absolutely positioned paragraph and any non-absolute positioned text

62
3E
wr
char

Wrap Code for absolute objects

63
3F
fLocked
char

when 1, paragraph may not be editted

64
40
dyaHeight
int
:15
7FFF
height of abs obj; 0 == Auto

fMinHeight
int
:1
8000
0 = Exact, 1 = At Least

66
42
shd
SHD

shading

68
44
dcs
DCS

drop cap specifier (see DCS definition)

70
46
anldPap
ANLD

autonumber list descriptor (see ANLD definition)

122
7A
itbdMac
int

number of tabs stops defined for paragraph. Must be >= 0 and <= 50.

124
7C
rgdxaTab
int[itbdMax]

array of positions of itbdMac tab stops. itbdMax == 50

224
E0
rgtbd
char[itbdMax]

array of itbdMac tab descriptors

cbPAP (count of bytes of PAP) is 274 (decimal), 112(hex)

The PAPX is stored within FKPs and within the STSH.

Paragraph Property Exceptions (PAPX)

b10
b16
field
type
size
bitfield
comments

0
0
cw
byte

count of words of following data in PAPX. The first byte of a PAPX is a count of words when PAPX is stored in an FKP. Count of words is used because PAPX in an FKP can contain paragraph and table sprms.

0
0
cb
byte

count of bytes of following data in PAPX. The first byte of a PAPX is a count of bytes when a PAPX is stored in a STSH. Count of bytes is used because only paragraph sprms are stored in a STSH PAPX.

1
1
istd
byte

index to style descriiptor of the style from which the paragraph inherits its paragraph and character properties

3
3
grpprl
character array

a list of the sprms that encode the differences between PAP for a paragraph and the PAP for the style used. When a paragraph bound is also the end of a table row, the PAPX also contains a list of table sprms which express the difference of table row's TAP from an empty TAP that has been cleared to zeros. The table sprms are recorded in the list after all of the paragraph sprms.See Sprms definitions for list of sprms that are used in PAPXs.

papx.cw is equal to (3 + sizeof(grpprl) + 1) / 2. If the size of the grpprl is odd, a byte of zero is stored immediately after the grpprl to pad the PAPX so its length in bytes is papx.cw * 2.

Picture Descriptor (PICxe "PIC")

b10
b16
field
type
size
bitfield
comments

0
0
lcb
long

number of bytes in the PIC structure plus size of following picture data which may be a Window's metafile, a bitmap, or the filename of a TIFF file.

4
4
cbHeader
unsigned

number of bytes in the PIC (to allow for future expansion).

6
6
mfp.mm
int

8
8
mfp.xExt
int

10
A
mfp.yExt
int

12
C
mfp.hMF
int

If a
Windows metafiles is stored immediatelly following the PIC structure, the mfp is a Window's METAFILEPICT structure. When the data immediately following the PIC is a TIFF filename, mfp.mm == 98 If a bitmap is stored after the pic, mfp.mm == 99

When the PIC describes a bitmap, mfp.xExt is the width of the bitmap in pixels and mfp.yExt is the height of the bitmap in pixels..

14
E
bm
BITMAP(14 bytes)
Window's bitmap structure when PIC describes a BITMAP.

14

E
rcWinMF
rc (rectangle - 8 bytes)

rect for window origin and extents when metafile is stored -- ignored if 0

28

1C
dxaGoal
int

horizontal measurement in twips of the rectangle the picture should be imaged within.

30

1E
dyaGoal
int

vertical measurement in twips of the rectangle the picture should be imaged within.

 when scaling bitmaps, dxaGoal and dyaGoal may be ignored if the operation would cause the bitmap to shrink or grow by a non -power-of-two factor

32

20
mx
uns

horizontal scaling factor supplied by user expressed in .001% units.

34

22
my
uns

vertical scaling factor supplied by user expressed in .001% units.

 for all of the Crop values, a positive measurement means the specified border has been moved inward from its original setting and a negative measurement means the border has been moved outward from its original setting.

36

24
dxaCropLeft
int

the amount the picture has been cropped on the left in twips.

38

26
dyaCropTop
int

the amount the picture has been cropped on the top in twips.

40

28
dxaCropRight
int

the amount the picture has been cropped on the right in twips.

42

2A
dyaCropBottom
int

the amount the picture has been cropped on the bottom in twips.

44

2C
brcl
int
:4
000F
Obsolete, superseded by brcTop, etc. In WinWord 1.x, it was the type of border to place around picture

0
single

1
thick

2
double

3
shadow

fFrameEmpty
int
:1
0010
picture consists of a single frame

fBitmap
int
:1
0020
==1, when picture is just a bitmap

fDrawHatch
int
:1
0040
==1, when picture is an active OLE object

fError
int
:1
0080
==1, when picture is just an error message

bpp
int
:8

bits per pixel

0
unknown

1
monochrome
4

VGA

46

2E
brcTop
BRC

specification for border above picture

48

30
brcLeft
BRC

specification for border to the left of

picture

50

32
brcBottom
BRC

specification for border below picture

52

34
brcRight
BRC

specification for border to the right of

picture

54

36
dxaOrigin
int

horizontal offset of hand annotation origin

56

38
dyaOrigin
int

vertical offset of hand annotation origin

58

3A
rgb

variable array of bytes containing Window's metafile, bitmap or TIFF file filename.

Piece Descriptor (PCD)

b10
b16
field
type
size
bitfield
comment

0
0
fNoParaLast
int
:1
0001
when 1, means that piece contains no end of paragraph marks.

fPaphNil
int
:1
0002
used internally by Word

fCopied
int
:1
0004
used internally by Word

*
int
:5

1
1
fn
int
:8
FF00
used internally by Word

2
2
fc
FC

file offset of beginning of piece. The size of the ithpiece can be determined by subtracting rgcp[i] of the containing plcfpcd from its rgcp[i+1].

6
6
prm
PRM

contains either a single sprm or else an index number of the grpprl which contains the sprms that modify the properties of the piece.

8
8
cbPCD

Plex of CPs stored in File (PLCF)

offset (in decimal)

field
type

comment

0

rgfc
FC[]
given that the size of PLCF is cb and the size of the structure stored in plc is cbStruct, then the number of structure instances stored in PLCF, iMac is given by (cb -4)/(4 + cbStruct) The number of FCs stored in the PLCF will be iMac + 1.

4*(iMac+1)

rgstruct
struct[] array of some arbitrary structure.

cbPLC (count of bytes of a PLC) is iMac(4 + cbStruct) + 4.

The PRM has two variants. In the first variant, the PRM records a single one or two byte sprm whose opcode is less than 128.

Property Modifier(variant 1) (PRM)

b10
b16
field
type
size
bitfield
comment

0
0
fComplex
int
:1
0001
set to 0 for variant 1

sprm
int
:7
00FE
sprm opcode

val
int
:8
FF00
sprm’s second byte if necessary

In the second variant, prm.fComplex is 1, and the rest of the structure records an index to a grpprl stored in the CLX (described in Complex File Format topic).

Property Modifier(variant 2) (PRM)

b10
b16
field
type
size
bitfield
comment

0
0
fComplex
int
:1
0001
set to 1 for variant 2

igrpprl
int
:15
FFFE
index to a grpprl stored in CLX portion of file.

Section Descriptor (SEDxe "SED")

b10
b16
field
type
size
bitfield
comments

0
0
fSwap
int
:1
0001
runtime flag, indicates whether orientation should be changed before printing. 0 indicates no change, 1 indicates orientation change.

fUnk
int
:1
0002
used internally by Windows Word

fn
int
:14
FFFC
used internally by Windows Word

2
2
fcSepx
FC

file offset to beginning of SEPX stored for section. If sed.fcSepx == 0xFFFFFFFF, the section properties for the section are equal to the standard SEP (see SEP definition).

6
6
fnMpr
int

used internally by Windows Word

8
8
fcMpr
FC

points to offset in FC space where the Macintosh Print Record for a document created on a Mac will be stored

cbSED is 12 (decimal)), C (hex).

Section Properties (SEPxe "SEP")

b10
b16
field
type
comments

0
0
bkc
uns char
break code:

0
No break

1
New column

2
New page

3
Even page

4
Odd page

1
1
fTitlePage
uns char
set to 1 when a title page is to be displayed

2
2
ccolM1
int
number of columns in section - 1.

4
4
dxaColumns
uns
distance that will be maintained between columns

6
6
fAutoPgn
char
only for Mac compatability, used only during open, when 1, sep.dxaPgn and sep.dyaPgn are valid page number locations

7
7
nfcPgn
uns char
page number format code:

0
Arabic

1
Roman (upper case)

2
Roman (lower case)

3
Letter (upper case)

4
Letter (lower case)

8
8
pgnStart
uns
user specified starting page number.

10
A
fUnlocked
uns char
set to 1, when a section in a locked document is unlocked

11
B
cnsPgn
uns char
chapter number separator for page numbers

12
C
fPgnRestart
uns char
set to 1 when page numbering should be restarted at the beginning of this section

13
D
fEndNote
uns char
when 1, footnotes placed at end of section. When 0, footnotes are placed at bottom of page.

14
E
lnc
char
line numbering code:

0
Per page

1
Restart

2
Continue

15
F
grpfIhdt
char
specification of which headers and footers are included in this section. See explanation in Headers and Footers topic.

16
10
nLnnMod
uns
if 0, no line numbering, otherwise this is the line number modulus (e.g. if nLnnMod is 5, line numbers appear on line 5, 10, etc.)

18
12
dxaLnn
int
distance of

20
14
dyaHdrTop
uns
y position of top header measured from top edge of page.

22
16
dyaHdrBottom
uns
y position of top header measured from top edge of page.

24
18
dxaPgn
int
when fAutoPgn ==1, gives the x position of auto page number on page in twips (for Mac compatabilty only)

26
1A
dyaPgn
int
when fAutoPgn ==1, gives the y position of auto page number on page in twips (for Mac compatabilty only)

28
1C
fLBetween
char
when ==1, draw vertical lines between columns

29
1D
vjc
char
vertical justification code

0
top justified

1
centered

2
fully justified vertically

3
bottom justified

30
1E
lnnMin
int
beginning line number for section

32
20
dmOrientPage
uns char

orientation of pages in that section. set to 0 when portrait, 1 when landscape

33
21
iHeadingPgn
char

heading number level for page number

34
22
xaPage
uns

default value is 12240 twips
width of page

36
24
yaPage
uns

default value is 15840 twips
height of page

38
26
dxaLeft
uns

default value is 1800 twips
left margin

40
28
dxaRight
uns

default value is 1800 twips
right margin

42
2A
dyaTop
int

default value is 1440 twips
top margin

44
2C
dyaBottom
int

default value is 1440 twips
bottom margin

46
2E
dzaGutter
uns

default value is 0 twips
gutter width

48
30
dmBinFirst
uns

bin number supplied from windows printer driver indicating which bin the first page of section will be printed.

50
32
dmBinOther
uns

bin number supplied from windows printer driver indicating which bin the pages other than the first page of section will be printed.

52
34
dmPaperReq
uns short
dmPaper code for form selected by user

54

36
fEvenlySpaced
char
when == 1, columns are evenly spaced. Default value is 1.

55

37

reserved

56

38
dxaColumnWidth
uns
used internally by Word

58
3A
rgdxaColumnWidthSpacing array of XA
array of 89 Xas that determine bounds of irregular width columns

236
EC
olstAnm
OLST
multilevel autonumbering list data (see OLST definition)

cbSEP (count of bytes of SEP) is 448(decimal), 1C0(hex).

The standard SEP is all zeros except as follows:

bkc
2

dyaPgn
720 twips (equivalent to .5 in)

dxaPgn
720 twips

fEndnote
1 (True)

fEvenlySpaced
1 (True)

xaPage
12240 twips

yaPage
15840 twips

dyaHdrTop
720 twips

dyaHdrBottom
720 twips

dmOrientPage
1 (portrait orientation)

Section Property Exceptions (SEPX)

b10
b16
field
type
size
bitfield
comment

0
0
cb
byte

count of bytes in remainder of SEPX.

1
1
grpprl
char[]

list of sprms that encodes the differences between the properties of a section and Word's default section properties.

The TBD is a substructure of the PAP.

Tab Descriptor (TBD)

b10
b16
field
type
size
bitfield
comments

0
0
jc
int
:3
07
justification code

0
left tab

1
centered tab

2
right tab

3
decimal tab

4
bar

tlc
int
:3
38
tab leader code

0
no leader

1
dotted leader

2
hyphenated leader

3
single line leader

4
heavy line leader

*
int
:2
C0
reserved

cbTBD (count of bytes of a tab descriptor) is 1.

The TC is a substructure of the TAP.
Table Cell Descriptors (TCxe "TC")

b10
b16
field
type
size
bitfield
comments

0
0
rgf
int

0
0
fFirstMerged
int
:1
0001
set to 1 when cell is first cell of a range of cells that have been merged. When a cell is merged, the display areas of the merged cells are consolidated and the text within the cells is interpreted as belonging to one text stream for purposes of calculating line breaks.

fMerged
int
:1
0002
set to 1 when cell has been merged with preceding cell.

fUnused
int
:14
FFFC
reserved

2
2
rgbrc
BRC[cbrcTc]

notational convenience for referring to brcTop, brcLeft, etc fields.

2
2
brcTop
BRC

specification of the top border of a table cell

4
4
brcLeft
BRC

specification of left border of table row

6
6
brcBottom
BRC

specification of bottom border of table row

8
8
brcRight
BRC

specification f right border of table row.

cbTC (count of bytes of a TC) is 10(decimal), A(hex).

Table Autoformat Look sPecifier (xe "TLP")

b10
b16
field
type
size
bitfield
comments

0
0
itl
short

index to Word’s table of table looks

2
2
fBorders
int
:1
0001
when ==1, use the border properties from the selected table look

fShading
int
:1
0002
when ==1, use the shading properties from the selected table look

fFont
int
:1
0004
when ==1, use the font from the selected table look

fColor
int
:1
0008
when ==1, use the color from the selected table look

fBestFit
int
:1
0010
when ==1, do best fit from the selected table look

fHdrRows
int
:1
0020
when ==1, apply properties from the selected table look to the header rows in the table

fLastRow
int
:1
0040
when ==1, apply properties from the selected table look to the last row in the table

fHdrCols
int
:1
0080
when ==1, apply properties from the selected table look to the header columns of the table

fLastCol
int
:1
0100
when ==1, apply properties from the selected table look to the last column of the table

Table Properties (TAPxe "TAP")

b10
b16
field
type
size
bitfield
comments

0
0
jc
int

justification code. specifies how table row should be justified within its column.

0
left justify

1
center

2
right justify

2
2
dxaGapHalf
int

measures half of the white space that will be maintained between text in adjacent columns of a table row. A dxaGapHalf width of white space will be maintained on both sides of a column boundary.

4
4
dyaRowHeight
int

when greater than 0. guarantees that the height of the table will be at least dyaRowHeight high. When less than 0, guarantees that the height of the table will be exactly absolute value of dyaRowHeight high. When 0, table will be given a height large enough to represent all of the text in all of the cells of the table.

6
6
fCantSplit
uns char

when 1, table row may not be split across page bounds

7
7
fTableHeader
uns char

when 1, table row is to be used as the header of the table

8
8
tlp
TLP

table look specifier (see TLP definition)

12
C
fCaFull
int
:1
0001
used internally by Word

fFirstRow
int
:1
0002
used internally by Word

fLastRow
int
:1
0004
used internally by Word

fOutline
int
:1
0008
used internally by Word

*
int
:12
FFE0
reserved

14
E
itcMac
int

count of cells defined for this row. ItcMac must be >= 0 and less than or equal to 32.

16
10
dxaAdjust
int

used internally by Word

18
12
rgdxaCenter
int[itcMax + 1]

rgdxaCenter[0] is the left boundary of cell 0 measured relative to margin.. rgdxaCenter[tap.itcMac - 1] is left boundary of last cell. rgdxaCenter[tap.itcMac] is right boundary of last cell.

84
54
rgtc
TC[itcMax]

array of table cell descriptors

404
194
rgshd
SHD[itcMax]

array of cell shades

468
1D4
rgbrcTable
BRC[6]

array of border defaults for cells

cbTAP (count of bytes of a TAP) is 480 (decimal), 1E0(hex).

Appendix A - Changes from version 1.x to 2.0

Changes to Structures

BRC

The previously defined BRC was renamed BRC10, and a new BRC was defined with new fields and field names.

CHP

The size of the CHP changed from 16 to 32 bits, with some spare bits added.

The fStrike, hpsPos, & fSysVanish fields were moved within the CHP. A new field, fRMarkDel, is located where fStrike used to be.

The fsLid and lid fields were added for the language identification code.

The types of several fields were changed. The ftc field was changed from an unsigned integer to a WORD. The hps field was changed from an unsigned char to a WORD. The fnPic field was changed from an unsigned integer to a BYTE.

The fObj and fcObj fields were added for managing embedded objects.

DOP

fWide removed

irmBar is a BYTE rather than an int

rgwSpare uns[2] became wSpare2 uns and wSpare3 uns

fPMHMainDoc, grfSuppression,fKeepFileFormat, fDfltTrueType, and fPagSuppressTopSpacing added

DTTM

FIB

Password Protection added

fEncrypted and lKey added for file encryption

Print Environment & orientation changes

fcPrEnv & cbPrEnv were removed.

fcPrDrv & cbPrDrv------------------\

fcPrEnvPort & cbPrEnvPort ------- were added to FIB

fcPrEnvLand & cbPrEnvLand----/

Autosave added

fcAutosaveSource

cbAutosaveSource

nLocale changed to lid

_OBJHEADER

PAP

Frames

added dyaFromText, wr, dyaHeight, fMinHeight

When converting 1.x documents with Absolutely Positioned Objects set the old dxaFromText (Distance from text) to both dxaFromText and dyaFromText.

Shading

added shd

Auto numbering

added nfcSeqNumb and nnSeqNumb

PIC

(at the end of the structure before the variable length array)

brcTop

BRC

brcLeft

BRC

brcBottom
BRC

brcRight
BRC

dxaOrigin, dyaOrigin

SEP

removed fAutoPgn changed to bUnused1

Added Page Orientation stuff

morPage

bUnused2

Added Printer Environment

dmBinFirst

dmBinOther

DOP to SEP

Page Dimensions & Margin stuff

xaPage

yaPage

dxaLeft

dxaRight

dyaTop

dyaBottom

dxaGutter in DOP renamed dzaGutter in SEP

SED

fSpare (reserved) changed to fSwap (runtime flag for landscape/portrait orientation)

TAP

wSpare1

wSpare2

wSpare3

wSpare4

wSpare5

TAP

Shading

rgshd[itchMax] SHD

TC

Border

rgbrc, brcTop, brcLeft, brcBottom, brcRight were int, now they are BRC.

Other changes

sttbfAssoc

Indices to the associated string table and descriptions of strings were added.

sttbfFn

The fonts written in the font string table and the indexing were changed.

REVIEW DavidLu

FonT Code Link field (FTCLxe "TC")

b10
b16
field
type
size
bitfield
comments

12
b
fEmbedLoad
int

:1
0001
1 if embedded fonts were stored in the file.

wLicense
int

:3
000e
Licensing permissions

0 - font is installable

4 - font is print preview

8 - font is editable

Index of Changes from version 1.x to 2.0

_OBJHEADER, 44

Autosave source, 11, 13

BRC, 36

CHP/CHPX, 37

DOP, 42

DTTM, 42

Embedded Object, 8, 10, 12, 44

FIB, 46

FLD, 44

Hand Annotation, 14, 42

PAP, 55

PIC, 58

SED, 61

SEP, 61

sprmCFFldVanish, 22

sprmCFRMark, 22

sprmCFStrikeRM, 22

sprmCLid, 22

sprmMax, 24

sprmPBrc, 22

sprmPDxaFromText, 22

sprmPDyaFromText, 22

sprmPicBrc, 23

sprmPNfcSeqNumb, 21

sprmPNoSeqNumb, 21

sprmPRuler, 22

sprmPShd, 22

sprmPWHeightAbs, 22

sprmSBCustomize, 23

sprmSBOrientation, 23

sprmSDmBinFirst, 23

sprmSDmBinOther, 23

sprmSDxaLeft, 23

sprmSDxaPgn, 23

sprmSDxaRight, 23

sprmSDyaBottom, 23

sprmSDyaPgn, 23

sprmSDyaTop, 23

sprmSDzaGutter, 23

sprmSFAutoPgn, 23

sprmSXaPage, 23

sprmSYaPage, 23

sprmTDefTable, 24, 28

sprmTDefTableShd, 24, 28

sprmTSetBrc, 24, 30

sprmTSetShd, 24, 30

sttbfAssoc, 11, 13, 35

sttbfFn, 11, 13

TAP, 63

TC, 63

�In the Winword 1.x format, the names of the first three fonts were omitted from the table and assumed to be "Tms Rmn" (for ftc = 0), "Symbol", and "Helv". In WinWord 2.0, the names for all fonts are included explitly in the table. It is still true that ftc = 0 represents the "best" Roman PS font on the system, ftc = 1 represents the Symbol font, and ftc = 2 represents the "best" Swiss (Sans Serif) PS font available.

1 In the Winword 1.x format, the names of the first three fonts were omitted from the table and assumed to be "Tms Rmn" (for ftc = 0), "Symbol", and "Helv". In WinWord 2.0, the names for all fonts are included explitly in the table. It is still true that ftc = 0 represents the "best" Roman PS font on the system, ftc = 1 represents the Symbol font, and ftc = 2 represents the "best" Swiss (Sans Serif) PS font available.

� The DOD.hplhqstd is a handle to a plex (array) of hq's (handles) to std's (style descriptions).

� Istd (slot) 0 is Normal. Istd 1-9 are Heading 1-9. Istd 10 is Default Paragraph Font. Istd 11-14 are reserved. So the first non-fixed index is 15 (see stshi.istdMaxFixedWhenSaved.)

� Those styles in fixed locations in the stylesheet will have the same istd's in all documents.

� For early versions of Word 6 files (versions prior to nFib 67), this field was not written. The cbStshi to use for those file versions is 4 bytes.

� More accurately a ”group”, because each of the elements (UPXs) in the array is variable-length.

� Note that the UPX.papx contains both a grpprl and an istd. Even if the grpprl is empty, the istd is still needed.

Microsoft Confidential
Page 7

